Tropospheric ozone (O) continues to be a threat to human health and agricultural productivity. While O control is challenging, tracking underlying formation mechanisms provides insights for regulatory directions. Here, we describe a comprehensive analysis of the effects of changing emissions on O formation mechanisms with observational evidence. We present a new approach that provides a quantitative metric for the ozone production rate (OPR) and its sensitivity to precursor levels by interpreting two decades of in situ observations of the six criteria air pollutants(2001-2018). Applying to the South Coast Air Basin (SoCAB), California, we show that by 2016-2018, the basin was at the transition region between nitrogen oxide (NO)-limited and volatile organic compound (VOC)-limited chemical regimes. Assuming future weather conditions are similar to 2016-2018, we predict that NO-focused reduction is required to reduce the number of summer days the SoCAB is in violation of the National Ambient Air Quality Standard (70 ppbv) for O. Roughly, ∼40% (∼60%) NO reductions are required to reduce the OPR by ∼1.8 ppb/h (∼3.3 ppb/h). This change would reduce the number of violation days from 28 to 20% (10%) in a year, mostly in summertime. Concurrent VOC reductions which reduce the production rate of HO radicals would also be beneficial.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c01026DOI Listing

Publication Analysis

Top Keywords

ozone production
8
south coast
8
coast air
8
air basin
8
formation mechanisms
8
production rate
8
required reduce
8
reduce number
8
decades changes
4
changes summertime
4

Similar Publications

Enhancing dark fermentative biohydrogen and VFA production via ozone pre-treatment.

Bioresour Technol

January 2025

Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, IVAGRO-Wine and Agrifood Research Institute, University of Cadiz, 11510 Puerto Real, Cadiz, Spain.

This study investigates the effects of ozone pre-treatment on two types of organic wastes: secondary sludge (SS) and wine vinasse (WV). Ozone pre-treatment of SS, a semi-solid waste, significantly increased the Dissolved Organic Carbon (DOC) and Total Volatile Fatty Acids (TVFAs) through hydrolysis. Conversely, ozone pre-treatment of WV, a liquid organic waste, reduced the availability of soluble biodegradable substrates and decreased the concentration of carboxylic acids with carbon chain length higher than 4.

View Article and Find Full Text PDF

Nitrogen heterocyclic antibiotics (NHAs) pollution poses a significant threat to aquatic ecosystems. Ozonation (O) pretreatment is beneficial for the removal of total nitrogen (TN) in antibiotics by facilitating subsequent biological treatment. However, nitrogen transformation and bacterial community responses when treating NHAs by O-coupled biological processes remain unclear.

View Article and Find Full Text PDF

Degradation of Methylene Blue by Ozone Oxidation Catalyzed by the Magnetic MnFeO@CoS Nanocomposite.

Langmuir

January 2025

CSSC Nanjing Lvzhou Environmental Protection Co., Ltd, Nanjing 210039, China.

In this study, the MnFeO@CoS magnetic nanocomposite was prepared by a two-step hydrothermal method and used to catalyze the ozone oxidation degradation of methylene blue. It was characterized by XRD, EDS, SEM, FT-IR, and XPS. The results showed that the introduction of CoS made MnFeO grow uniformly on CoS nanosheets, which effectively prevented the agglomeration of MnFeO.

View Article and Find Full Text PDF

Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses.

Membranes (Basel)

January 2025

Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur Col. Centro, Cd. Obregón C.P. 85000, Sonora, Mexico.

Technical and economic criteria were used to evaluate the feasibility of the treatment of an industrial effluent (10 m/h) for water recovery and reuse. The treatment evaluation included the following: (1) effluent characteristic determination; (2) selection and evaluation of the effluent treatment at lab scale, establishing operating conditions and process efficiency; (3) scaling up the treatment process to the industrial level; (4) treatment plant design and commercial availability analysis of the required equipment; and (5) the costs of the inversion and operation of the plant treatment, cost/m for water recovery, and time of investment recovery. The physicochemical characteristics of the effluent exposed the polluted wastewater with sodium chloride salts and colourants, predominating a mixture of tartrazine, Red 40, and brilliant blue from the synthesis of food additives.

View Article and Find Full Text PDF

Nitryl chloride (ClNO) is a key precursor of chlorine radicals, influencing atmospheric oxidation and secondary pollutants formation. Few studies have examined the ClNO chemistry from the perspective of the planetary boundary layer. Here, we conducted a vertically resolved investigation of ClNO at six heights (ranging from 5 to 335 m) on a 356 m tower in the Pearl River Delta, China, during winter 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!