A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Am I Positive? Improving Human Immunodeficiency Virus Testing in the Era of Preexposure Prophylaxis and Immediate Antiretroviral Therapy Using Machine Learning. | LitMetric

Background: Human immunodeficiency virus (HIV) testing is the first step in the HIV prevention cascade. The Centers for Disease Control and Prevention HIV laboratory diagnostic testing algorithm was developed before preexposure prophylaxis (PrEP) and immediate antiretroviral therapy (iART) became standards of care. PrEP and iART have been shown to delay antibody development and affect the performance of screening HIV assays. Quantitative results from fourth-generation HIV testing may be helpful to disambiguate HIV testing.

Methods: We retrospectively reviewed 38 850 results obtained at an urban, academic medical center. We assessed signal-to-cutoff (s/co) distribution among positive and negative tests, in patients engaged and not engaged in an HIV prevention program, and evaluated changes in patients with multiple results. Classification and regression tree (CART) analysis was used to determine a threshold cutoff, and logistic regression was used to identify predictors of true positive tests.

Results: Ninety-seven percent of patients with a negative HIV test had a result that was ≤0.2 s/co. For patients tested more than once, we found differences in s/co values did not exceed 0.2 s/co for 99.2% of results. CART identified an s/co value, 38.78, that in logistic regression on a unique validation cohort remained associated with the likelihood of a true-positive HIV result (odds ratio, 2.49).

Conclusions: Machine-learning methods may be used to improve HIV screening by automating and improving interpretations, incorporating them into robust algorithms, and improving disease prediction. Further investigation is warranted to confirm if s/co values combined with a patient's risk profile will allow for better clinical decision making for individuals on PrEP or eligible for iART.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290571PMC
http://dx.doi.org/10.1093/ofid/ofac259DOI Listing

Publication Analysis

Top Keywords

hiv
10
human immunodeficiency
8
immunodeficiency virus
8
preexposure prophylaxis
8
antiretroviral therapy
8
hiv testing
8
hiv prevention
8
logistic regression
8
s/co values
8
positive? improving
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!