LiCoO (LCO) is widely applied in today's rechargeable battery markets for consumer electronic devices. However, LCO operations at high voltage are hindered by accelerated structure degradation and electrode/electrolyte interface decomposition. To overcome these challenges, co-modified LCO (defined as CB-Mg-LCO) that couples pillar structures with interface shielding are successfully synthesized for achieving high-energy-density and structurally stable cathode material. Benefitting from the "Mg-pillar" effect, irreversible phase transitions are significantly suppressed and highly reversible Li shuttling is enabled. Interestingly, bonding effects between the interfacial lattice oxygen of CB-Mg-LCO and amorphous Co B coating layer are found to elevate the formation energy of oxygen vacancies, thereby considerably mitigating lattice oxygen loss and inhibiting irreversible phase transformation. Meanwhile, interface shielding effects are also beneficial for mitigating parasitic electrode/electrolyte reactions, subsequent Co dissolution, and ultimately enable a robust electrode/electrolyte interface. As a result, the as-designed CB-Mg-LCO cathode achieves a high capacity and excellent cycle stability with 94.6% capacity retention at an extremely high cut-off voltage of 4.6 V. These findings provide new insights for cathode material modification methods, which serves to guide future cathode material design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202204845 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Institute of Chemistry Chinese Academy of Sciences, Institute of chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA.
Modulating the surface microenvironment of electrodes stands as a pivotal aspect in enhancing the electrocatalytic performance for CO2 electroreduction. Herein, we propose an innovative approach by incorporating a small amount of linear oligomer, polyethylene glycol (PEG), into Cu2O catalysts during the preparation of the CuPEG electrode. The Faradaic efficiency (FE) toward multicarbon products (C2+) increases from 69.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China.
Room-temperature sodium-sulfur (RT Na-S) batteries that typically feature multielectron conversion chemistries can allow an ultrahigh specific capacity of 1675 mA h g and a high energy density of 1275 W h kg but unfortunately suffer from a lot of intractable challenges from sulfur cathodes. These issues cover the poor electronic conductivity of pristine sulfur and solid products, the severe shuttle effect of polysulfides, and the sluggish redox kinetics, The shuttling behavior of polysulfides always leads to cathode/anode instability and performance degeneration. Recently, the emerging catalysis strategy has been demonstrated as a reliable pathway to tackle the central issues caused by sulfur electrochemistry and revitalize RT Na-S batteries.
View Article and Find Full Text PDFClin Orthop Relat Res
January 2025
School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia.
Background: Adolescent idiopathic scoliosis (AIS) is characterized by an asymmetrical formation of the spine and ribcage. Recent work provides evidence of asymmetrical (right versus left side) paraspinal muscle size, composition, and activation amplitude in adolescents with AIS. Each of these factors influences muscle force generation.
View Article and Find Full Text PDFNanotechnology
January 2025
Muhayil Asir, Applied College, King Khalid University, Abha 62529, Saudi Arabia.
JMIR Form Res
January 2025
University Hospital for Visceral Surgery, PIUS-Hospital, Department for Human Medicine, Faculty VI, University of Oldenburg, Oldenburg, Germany.
Background: The integration of advanced technologies such as augmented reality (AR) and virtual reality (VR) into surgical procedures has garnered significant attention. However, the introduction of these innovations requires thorough evaluation in the context of human-machine interaction. Despite their potential benefits, new technologies can complicate surgical tasks and increase the cognitive load on surgeons, potentially offsetting their intended advantages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!