Quenching and amplification of thermoacoustic oscillations in two nonidentical Rijke tubes interacting via time-delay and dissipative coupling.

Phys Rev E

Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong and Guangdong-Hong-Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.

Published: June 2022

We numerically explore the quenching and amplification of self-excited thermoacoustic oscillations in two nonidentical Rijke tubes interacting via time-delay and dissipative coupling. On applying either type of coupling separately, we find that the presence of nonidentical heater powers can shrink the regions of amplitude death in both oscillators, while producing new regions of amplitude amplification in the weaker oscillator. We find that the magnitude of amplitude amplification grows with the heater power mismatch and with the total power input. These effects are also present when both types of coupling are applied simultaneously. This study highlights the critical role that nonidentical thermal loads can play in determining the amplitude response of coupled thermoacoustic systems, facilitating the design of control strategies for coupled oscillatorlike devices such as gas turbines.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.105.064206DOI Listing

Publication Analysis

Top Keywords

quenching amplification
8
thermoacoustic oscillations
8
oscillations nonidentical
8
nonidentical rijke
8
rijke tubes
8
tubes interacting
8
interacting time-delay
8
time-delay dissipative
8
dissipative coupling
8
regions amplitude
8

Similar Publications

Although fluorescence analysis methods are widely used in pesticide residue detection, improving their sensitivity and selectivity remains a challenge. This paper presents a novel ratio fluorescence sensor based on the molecular imprinting polymers (MIPs) and metal-enhanced fluorescence for visual detection of dicamba (DIC). Calcium fluoride (CaF) quantum dots (QDs) were immobilized on the surface of Ag@MIPs, resulting in a blue fluorescence response signal (Ag@MIPs-CaF).

View Article and Find Full Text PDF

A novel dual-mode microfluidic sensing platform integrating photoelectrochemical (PEC) and fluorescence (FL) sensors was developed for the sensitive monitoring of heart fatty acid binding protein (h-FABP). First, BiVO/AgInS (BVAIS) composites with excellent photoelectric activity were synthesized as sensing matrices. The BVAIS heterojunction with a well-matched internal energy level structure provided a stable photocurrent.

View Article and Find Full Text PDF

Lead (Pb) ions give an imminent danger since they have been known to cause persistent damage to humans, plants, and animals, even at low concentrations, and cysteine (Cys) elevated levels are critical indicators for many diseases. Therefore, their detection is critical in pharmaceutical and environmental samples. This study tailored an innovative fluorescence switch off-on assay to detect Pb and Cys based on the amplification of G-quadruplex (G-4) to N-methylmesoporphyrin IX (NMM).

View Article and Find Full Text PDF

Flower-like tailored carbon nitride oligomer as an excellent aggregation-induced electrochemiluminescence emitter for sensitive immunoassay of neuron-specific enolase via dual quenching by bimetallic phenolic networks.

J Colloid Interface Sci

January 2025

Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. Electronic address:

The adjustment of the electrochemiluminescence (ECL) of polymeric carbon nitride (CN) is essential for its application in sensitive immunoassays. However, such modification through aggregation-induced emission (AIE) has not yet been reported. Herein, aggregation-induced ECL in CN oligomer (CNO) was induced through the introduction of a rotatable imine moiety, with the resulting material exhibiting excellent performance in the targeted immunodetection of neuron-specific enolase.

View Article and Find Full Text PDF

In this work, a new dual-signal fluorescence strategy based on nano-gold molecular beacon (MB) and in-situ generated silver nano-clusters (NCs) coupled with multiple amplification technique was developed for sensitive detection of miRNA (let-7b). miRNA can recognize both hairpin probe (HP) and auxiliary DNA, inducing dual-cycle amplification-process to release plenty of DNA S2. As the report probe carboxyfluorescein (FAM) was modified on Au nanoparticles (AuNPs), the fluorescent signal was quenched due to the fluorescence resonance energy transfer (FRET).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!