Delocalized nonlinear vibrational modes (DNVMs) supported in crystal lattices are exact solutions to the equations of motion of particles that are determined by the symmetry of the lattices. DNVMs exist for any vibration amplitudes and for any interparticle potentials. It is important to know how the properties of DNVMs depend on the parameters of interparticle potentials. In this work, we analyze the effect of the Morse potential stiffness on the properties of one-component DNVMs in a face-centered cubic (fcc) lattice. In particular, the frequencies, kinetic and potential energy, mechanical stress, and elastic constants of DNVMs in a large range of vibration amplitudes are considered. Frequency-amplitude dependency obtained for the Morse crystal is compared with that obtained earlier for copper by using the potentials of the many-body embedded atom method. The properties of DNVMs are mainly dictated by their symmetry and are less influenced by the interparticle potentials. It is revealed that at low and high stiffness of interparticle bonds, different sets of DNVMs have frequencies above the phonon band. This is important to predict the possible types of discrete breathers supported by the fcc lattice. The results obtained in the work enrich the understanding of the influence of interparticle potentials on the properties of the studied family of exact dynamic solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.105.064204DOI Listing

Publication Analysis

Top Keywords

interparticle potentials
16
fcc lattice
12
stiffness interparticle
8
interparticle bonds
8
delocalized nonlinear
8
nonlinear vibrational
8
vibrational modes
8
vibration amplitudes
8
potentials properties
8
properties dnvms
8

Similar Publications

Quantifying the Pore Characteristics and Heterogeneity of the Lower Cambrian Black Shale in the Deep-Water Region, South China.

ACS Omega

January 2025

Hubei Key Laboratory of Petroleum Geochemistry and Environment, College of Resources and Environment, Yangtze University, Wuhan 430100, China.

Recently, significant breakthroughs have been made in the exploration of shale gas in the Lower Cambrian black shale of the Sichuan Basin, indicating a promising commercial extraction potential. However, there remains considerable controversy regarding the pore structural characteristics for this shale formation, especially in the deep-water region. To address this, this paper focused on core samples from two shale gas wells (Xa1 and Xb1) located in the slope-basin facies zone during the Early Cambrian.

View Article and Find Full Text PDF

In agricultural and waste management systems, dairy manure wastewater is often recycled for irrigation. However, a key challenge lies in handling suspended solids (SS) and effectively dewatering sludge. To address this, an innovative polycationic soybean protein-based flocculant (SPI+) was developed and applied to enhance flocculation and sludge dewatering efficiency.

View Article and Find Full Text PDF

Hypothesis: The porosity affects the rheological response of porous particle suspensions.

Experiments: Non-Brownian suspensions of porous particles immersed in a Newtonian Polyisobutene are investigated. Three different particles, with different porosity, pore structure and similar size, and non-porous irregular particles are used.

View Article and Find Full Text PDF

Self-Assembled Chains and Solids of Dipolar Atoms in a Multilayer.

Phys Rev Lett

December 2024

Departament de Física, Campus Nord B4-B5, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain.

We predict that ultracold bosonic dipolar gases, confined within a multilayer geometry, may undergo self-assembling processes, leading to the formation of chain gases and solids. These dipolar chains, with dipoles aligned across different layers, emerge at low densities and resemble phases observed in liquid crystals, such as nematic and smectic phases. We calculate the phase diagram using quantum Monte Carlo methods, introducing a newly devised trial wave function designed for describing the chain gas, where dipoles from different layers form chains without in-plane long-range order.

View Article and Find Full Text PDF

The study presents the fabrication and superior photoactivity of a ternary g-CN/FeVO/AgBr heterojunction nanocomposite, synthesized via a chemical precipitation method for effective degradation of tetracycline (TC) and Victoria Blue (VB) dye under light illumination. The morphology and the crystal size of the synthesized nanocomposite were characterized by using FESEM and XRD and the calculated grain size (100.39 nm) is larger than the crystal size (48.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!