Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gas-kinetic simulations of rarefied and compressible mixing layers are performed to characterize continuum breakdown and the effect on the Kelvin-Helmholtz instability. The unified gas-kinetic scheme (UGKS) is used to perform the simulations at different Mach and Knudsen numbers. The UGKS stress tensor and heat-flux vector fields are compared against those given by the Navier-Stokes-Fourier constitutive equations. The most significant difference is seen in the shear stress and transverse heat flux. The study demonstrates the existence of two distinct continuum breakdown regimes, one at low and the other at high convective Mach numbers. Overall, at low convective Mach numbers, the deviation from continuum stress and heat flux appears to scale exclusively with the micro-macro length scale ratio given by the Knudsen number. On the other hand, at high convective Mach numbers, the deviation depends on the global micro-macro timescale ratio given by the product of Mach and Knudsen numbers. We further demonstrate that, unlike shear stresses and transverse heat flux, the deviations in normal stresses and the streamwise heat flux depend separately on Knudsen and Mach numbers. A local parameter called the gradient Knudsen number is proposed to characterize the rarefaction effects on the local momentum and thermal transport. Noncontinuum aspects of gas-kinetic stress-tensor and heat-flux behavior that Grad's 13-moment equation model reasonably captures are identified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.105.065102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!