We study the adsorption of simple fluids at smoothly structured, completely wet walls and show that a meniscus osculation transition occurs when the Laplace and geometrical radii of curvature of locally parabolic regions coincide. Macroscopically, the osculation transition is of fractional, 7/2, order and separates regimes in which the adsorption is microscopic, containing only a thin wetting layer, and mesoscopic, in which a meniscus exists. We develop a scaling theory for the rounding of the transition due to thin wetting layers and derive critical exponent relations that determine how the interfacial height scales with the geometrical radius of curvature. Connection with the general geometric construction proposed by Rascón and Parry is made. Our predictions are supported by a microscopic model density functional theory for drying at a sinusoidally shaped hard wall where we confirm the order of the transition and also an exact sum rule for the generalized contact theorem due to Upton. We show that as bulk coexistence is approached the adsorption isotherm separates into three regimes: A preosculation regime where it is microscopic, containing only a thin wetting layer; a mesoscopic regime, in which a meniscus sits within the troughs; and finally another microscopic regime where the liquid-gas interface unbinds from the crests of the substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.105.064801 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Institute of Experimental Physics, Faculty of Mathematics Physics and Informatics, University of Gdańsk, Wita Stwosza 57, Gdańsk 80-308, Poland.
This study examines the structure and properties of NiMo-C coatings synthesized via reactive magnetron sputtering of a NiMo alloy target in an argon/acetylene atmosphere. The coating structure evolves with carbon content from nanocrystalline, through amorphous to quasi-amorphous with a nanocolumnar structure. The nanostructure consists of metallic columns perpendicular to the substrate surrounded by an amorphous carbon shell.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Neurosurgery, Division of Functional and Integrative Medicine, Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
Laser speckle flowmetry (LSF) is a noninvasive tool for cerebral blood flow (CBF) measurement via a cranial bone window. LSF is influenced by various factors including the extent of removal of bone and dura mater and tissue wetness in the bone window. In this study, we aimed to characterize the effect of these conditions on LSF signals and identify optimal measurement conditions for CBF LSF measurements in rats.
View Article and Find Full Text PDFPLoS One
December 2024
School of Geoscience and Technology, Southwest Petroleum University, Chengdu, China.
Clarifying the pore-throat size and pore size distribution of tight sandstone reservoirs, quantitatively characterizing the heterogeneity of pore-throat structures, is crucial for evaluating reservoir effectiveness and predicting productivity. Through a series of rock physics experiments including gas measurement of porosity and permeability, casting thin sections, scanning electron microscopy, and high-pressure mercury injection, the quality of reservoir properties and microscopic pore-throat structure characteristics were systematically studied. Combined with fractal geometry theory, the effects of different pore throat types, geometric shapes and scale sizes on the fractal characteristics and heterogeneity of sandstone pore throat structure are clarified.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Instituto de Física, Benemérita Universidad Autónoma de Puebla, A.P. J-48, Puebla 72570, Mexico.
Leidenfrost puddles exhibit erratic bubble bursts that release vapor trapped beneath the liquid, becoming amorphous and unstable. We report a method to stabilize and design a Leidenfrost puddle. When a thin hydrophilic layer with a suitable design is placed over the liquid, the puddle adopts the layer shape due to adhesive forces and becomes stable.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
University of Coimbra, CEMMPRE, Department of Mechanical Engineering, 3030-788 Coimbra, Portugal.
In this paper, we studied the deposition and characterization of monolithic and silver-doped copper coatings using RF magnetron sputtering. The main objective was to examine the impact of different Ag contents on natural and thermally induced aging when compared with monolithic copper coatings. For this purpose, the as-deposited surfaces were left exposed to normal temperature and humidity conditions during one year (natural) and were annealed at 200 °C in a non-controlled atmosphere.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!