Speciociliatine, a diastereomer of mitragynine, is an indole-based alkaloid found in kratom (Mitragyna speciosa). Kratom has been widely used for the mitigation of pain and opioid dependence, as a mood enhancer, and/or as an energy booster. Speciociliatine is a partial µ-opioid agonist with a 3-fold higher binding affinity than mitragynine. Speciociliatine has been found to be a major circulating alkaloid in humans following oral administration of a kratom product. In this report, we have characterized the metabolism of speciociliatine in human and preclinical species (mouse, rat, dog, and cynomolgus monkey) liver microsomes and hepatocytes. Speciociliatine metabolized rapidly in monkey, rat, and mouse hepatocytes (in vitro half-life was 6.6 ± 0.2, 8.3 ± 1.1, 11.2 ± 0.7 min, respectively), while a slower metabolism was observed in human and dog hepatocytes (91.7 ± 12.8 and > 120 min, respectively). Speciociliatine underwent extensive metabolism, primarily through monooxidation and O-demethylation metabolic pathways in liver microsomes and hepatocytes across species. No human-specific or disproportionate metabolites of speciociliatine were found in human liver microsomes. The metabolism of speciociliatine was predominantly mediated by CYP3A4 with minor contributions by CYP2D6.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932950PMC
http://dx.doi.org/10.1208/s12248-022-00736-8DOI Listing

Publication Analysis

Top Keywords

metabolism speciociliatine
12
liver microsomes
12
speciociliatine
8
speciociliatine human
8
microsomes hepatocytes
8
metabolism
5
speciociliatine overlooked
4
kratom
4
overlooked kratom
4
kratom alkaloid
4

Similar Publications

Mitragynine is an "atypic opioid" analgesic with an alternative mechanism of action and a favorable side-effect profile. Our aim was to optimize the alkaloid extraction procedure from kratom leaves and to determine and isolate the most relevant compounds capable of penetrating the central nervous system. The PAMPA-BBB study revealed that mitragynine and its coalkaloids, speciociliatine, speciogynine, and paynantheine, possess excellent in vitro BBB permeability.

View Article and Find Full Text PDF

The possible interactions of morphine, paynantheine and speciociliatine alkaloids with ATP-binding cassette (ABC) transporters was investigated. The compounds were docked against ABCG2 and ABCB1 to predict the binding mode of alkaloids in active binding sites. The cytotoxicity of morphine, paynantheine and speciociliatine for EPG85.

View Article and Find Full Text PDF

Speciociliatine, a diastereomer of mitragynine, is an indole-based alkaloid found in kratom (Mitragyna speciosa). Kratom has been widely used for the mitigation of pain and opioid dependence, as a mood enhancer, and/or as an energy booster. Speciociliatine is a partial µ-opioid agonist with a 3-fold higher binding affinity than mitragynine.

View Article and Find Full Text PDF

Increasing use of the botanical kratom to self-manage opioid withdrawal and pain has led to increased kratom-linked overdose deaths. Despite these serious safety concerns, rigorous fundamental pharmacokinetic knowledge of kratom in humans remains lacking. We assessed the pharmacokinetics of a single low dose (2 g) of a well-characterized kratom product administered orally to six healthy participants.

View Article and Find Full Text PDF

Kratom, Korth., is being widely consumed in the United States for pain management and the reduction of opioid withdrawal symptoms. The central nervous system (CNS) active alkaloids of kratom, including mitragynine, 7-hydroxymitragynine, and numerous additional compounds, are believed to derive their effects through opioid receptor activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!