Ghrelin and ghrelin receptor (GHSR) in Chinese alligator, alligator sinensis: Molecular characterization, tissue distribution and mRNA expression changes during the active and hibernating periods.

Gen Comp Endocrinol

Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China. Electronic address:

Published: October 2022

The Chinese alligator (Alligator sinensis) is a freshwater crocodilian endemic to China. So far, the endocrine regulation of feeding and growth in Chinese alligator is poorly understood. In this study, the molecular structure and tissue expression profiles of ghrelin and its receptor GHSR in the Chinese alligator were characterized for the first time. The full-length cDNA of ghrelin was 1770 bp, including a 37 bp 5 '-UTR (untranslated region), a 435 bp ORF (open reading frame) and a 1298 bp 3 '-UTR. The ORF encodes a ghrelin precursor, which consists of 145 amino acid residues, including a signal peptide with 52 amino acid residues at the N-terminus, a mature peptide with 28 amino acid residues, and a possibly obestain at the C-terminus. The full-length cDNA of GHSR was 3961 bp, including a 5'-UTR of 375-bp, an ORF of 1059-bp and a 3' -UTR of 2527-bp. The ORF encodes a protein of 352 amino acid residues containing seven transmembrane domains, with multiple N glycosylation modification sites and conserved cysteine residue sites. The active core "GSSF" of Chinese alligator ghrelin was identical to that of mammals and birds, and the ghrelin binding site of GHSR was similar to that of mammals. The amino acid sequences of both ghrelin and GHSR share high identity with American alligator (Alligator mississippiensis) and birds. Ghrelin was highly expressed in cerebrum, mesencephalon, hypothalamus and multiple peripheral tissues, including lung, stomach and intestine, suggesting that it could play functions in paracrine and/or autocrine manners in addition to endocrine manner. GHSR expression level was higher in hypothalamus, epencephalon and medulla oblongata, and moderate in multiple peripheral tissues including lung, kindey, stomach and oviduct, implicating that ghrelin/GHSR system may participate in the regulation of energy balance, food intake, water and mineral balance, gastrointestinal motility, gastric acid secretion and reproduction. During hibernation, the expression of ghrelin and GHSR in the brain was significantly increased, while ghrelin was significantly decreased in heart, liver, lung, stomach, pancreas and ovary, and GHSR was significantly decreased in heart, liver, spleen, lung, kindey, stomach, ovary and oviduct. These temporal changes in ghrelin and GHSR expression could facilitate the physiological adaption to the hibernation of Chinese alligator. Our study could provide basic data for further studies on the regulation of feeding, physiological metabolism and reproduction of Chinese alligator, which could also be useful for the improvement of artificial breeding of this endangered species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2022.114097DOI Listing

Publication Analysis

Top Keywords

chinese alligator
28
amino acid
20
acid residues
16
alligator alligator
12
ghrelin ghsr
12
ghrelin
11
alligator
11
ghsr
9
ghrelin receptor
8
receptor ghsr
8

Similar Publications

Purpose: MAK683, a first-in-class and highly selective allosteric inhibitor of the embryonic ectoderm development subunit of polycomb repressive complex 2, has shown sustained antitumor activity in tumor xenograft models. This first-in-human phase 1/2 study evaluated the safety, pharmacokinetics (PK), and clinical activity of single-agent MAK683 in advanced malignancies.

Methods: MAK683 was administered fasted once daily or twice daily continuously in 28-day treatment cycles.

View Article and Find Full Text PDF

Bone loading is a crucial factor that constrains locomotor capacities of terrestrial tetrapods. To date, limb bone strains and stresses have been studied across various animals, with a primary emphasis on consistent bone loading in mammals of different sizes and variations in loading regimes across different clades and limb postures. However, the relationships between body size, limb posture and limb bone loading remain unclear in animals with non-parasagittally moving limbs, limiting our understanding of the evolution of limb functions in tetrapods.

View Article and Find Full Text PDF

Chromosome-scale genome assembly and gene annotation of the Alligator Gar (Atractosteus spatula).

Sci Data

December 2024

Key Laboratory of Wetland Ecology and Environment & Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.

Given the aggressive nature and robust survival capabilities of the alligator gar (Atractosteus spatula), if it was to exist in a new environment as an invasive species, it could cause significant disruption to the invaded ecosystem. Building on the continuity and completeness of the existing draft genome were not optimal, this study has updated a high-quality genome of the alligator gar at the chromosome level, which was assembled using Oxford Nanopore Technology and chromatin interaction mapping (Hi-C) sequencing techniques. In summary, the alligator gar genome in this study was 1.

View Article and Find Full Text PDF

We report clinical activity and safety of sitravatinib in patients with advanced cancer from basket cohorts with specific molecular alterations, in a Phase Ib study. Patients with advanced solid tumors harboring amplification, mutation, or rearrangement of , , , , , , , or received sitravatinib once daily. Primary end point was confirmed objective response rate (ORR).

View Article and Find Full Text PDF

Modern birds possess highly encephalized brains that evolved from non-avian dinosaurs. Evolutionary shifts in developmental timing, namely juvenilization of adult phenotypes, have been proposed as a driver of head evolution along the dinosaur-bird transition, including brain morphology. Testing this hypothesis requires a sufficient developmental sampling of brain morphology in non-avian dinosaurs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!