A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A multi-modal assessment of sleep stages using adaptive Fourier decomposition and machine learning. | LitMetric

Healthy sleep is essential for the rejuvenation of the body and helps in maintaining good health. Many people suffer from sleep disorders that are characterized by abnormal sleep patterns. Automated assessment of such disorders using biomedical signals has been an active subject of research. Electroencephalogram (EEG) is a popular diagnostic used in this regard. We consider a widely-used publicly available database and process the signals using the Fourier decomposition method (FDM) to obtain narrowband signal components. Statistical features extracted from these components are passed on to machine learning classifiers to identify different stages of sleep. A novel feature measuring the non-stationarity of the signal is also used to capture salient information. It is shown that classification results can be improved by using multi-channel EEG instead of single-channel EEG data. Simultaneous utilization of multiple modalities, such as Electromyogram (EMG), Electrooculogram (EOG) along with EEG data leads to further enhancement in the obtained results. The proposed method can be efficiently implemented in real-time using fast Fourier transform (FFT), and it provides better classification results than the other algorithms existing in the literature. It can assist in the development of low-cost sensor-based setups for continuous patient monitoring and feedback.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.105877DOI Listing

Publication Analysis

Top Keywords

fourier decomposition
8
machine learning
8
eeg data
8
sleep
5
multi-modal assessment
4
assessment sleep
4
sleep stages
4
stages adaptive
4
adaptive fourier
4
decomposition machine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!