CRISPR/Cas9-medaited knockout of endogenous T-cell receptor in Jurkat cells and generation of NY-ESO-1-specific T cells: An in vitro study.

Int Immunopharmacol

Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Parastar St., Rasht 41887-94755, Iran. Electronic address:

Published: September 2022

Adoptive transfer of T-cell receptor (TCR)-engineered T cells has been successful in mediating favorable clinical outcomes. TCR-engineered T cells can be applied for targeting cancers whose associated antigens are intracellular and presented through major histocompatibility complexes (MHC). The mispairing of the exogenous TCR chains with the endogenous TCR chains leads to functionally impaired TCR-engineered T cells. The CRISPR/Cas9 genome-editing system can be utilized for the knockout of the endogenous TCR in T cells before introducing the exogenous TCR chains. In this study, we used the lentiviral delivery of CRISPR/Cas9 for disrupting the expression of the endogenous TCR in the Jurkat cell line. Next, an exogenous TCR targeting human leukocyte antigen (HLA)-A*0201-restricted New York esophageal squamous cell carcinoma 1 (NY-ESO-1) peptide was transduced into the TCR-knockout (KO) Jurkat cells. Further, we assessed lentiviral transduction efficacy using tetramer assay and evaluated the functionality of the NY-ESO-1-specific TCR-engineered T cells by quantifying the cell surface expression of CD69 upon co-cultivation with peptide-pulsed T2 cells. We successfully knocked out the endogenous TCR in ∼40% of the Jurkat cells. TCR-KO cells were selected and subjected to express NY-ESO-1-specific TCRs using lentiviral vectors. Flow cytometry analysis confirmed that up to 55% of the cells expressed the transgenic TCR on their surface. The functionality assay demonstrated that >90% of the engineered cells expressed CD69 when co-cultured with peptide-pulsed T2 cells. Conclusively, we developed a pipeline to engineer Jurkat cells using the state-of-the-art technique CRISPR/Cas9 and generated TCR-engineered cells that can become activated by a tumor-specific antigen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2022.109055DOI Listing

Publication Analysis

Top Keywords

tcr-engineered cells
20
cells
16
jurkat cells
16
endogenous tcr
16
exogenous tcr
12
tcr chains
12
knockout endogenous
8
t-cell receptor
8
tcr
8
peptide-pulsed cells
8

Similar Publications

Targeting cancer with precision: strategical insights into TCR-engineered T cell therapies.

Theranostics

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.

T cell receptor-engineered T (TCR-T) cell therapies are at the forefront of cancer immunotherapy, offering a transformative approach that significantly enhances the ability of T cells to recognize and eliminate cancer cells. This innovative method involves genetically modifying TCRs to increase their affinity for tumor-specific antigens. While these enhancements improve the ability of T cells to recognize and bind to antigens on cancer cells, rigorous assessment of specificity remains crucial to ensure safety and targeted responses.

View Article and Find Full Text PDF

The clinical success of cancer immunotherapy has driven ongoing efforts to identify novel targets that can effectively guide potent effector functions to eliminate malignant cells. Traditionally, immunotherapies have focused on surface antigens; however, these represent only a small fraction of the cancer proteome, limiting their therapeutic potential. In contrast, the majority of proteins within the human proteome are intracellular, yet they are represented on the cell surface as short peptides presented by MHC class I molecules.

View Article and Find Full Text PDF

Introduction: Systemic treatment options for renal cell carcinoma (RCC) have expanded considerably in recent years, and both tyrosine kinase inhibitors and immune checkpoint inhibitors, alone or in combination, have entered the clinical arena. Adoptive cell immunotherapies have recently revolutionized the treatment of cancer and hold the promise to further advance the treatment of RCC.

Areas Covered: In this review, we summarize the latest preclinical and clinical development in the field of adoptive cell immunotherapy for the treatment of RCC, focusing on lymphokine-activated killer (LAK) cells, cytokine-induced killer (CIK) cells, tumor-infiltrating T cells (TILs), TCR-engineered T cells, chimeric antigen receptor (CAR) T cells, and dendritic cell vaccination strategies.

View Article and Find Full Text PDF
Article Synopsis
  • Adoptive cell therapy using TCR-engineered T-cells shows promise in targeting tumor cells, especially cancer-testis antigens in solid tumors, despite limited testing in this area compared to blood cancers.
  • The study introduced an innovative protocol for expanding MAGE-A3-specific T-cells and utilized advanced techniques like single-cell multi-omic analysis and lentiviral engineering to enhance T-cell effectiveness.
  • Results indicated a significant increase in MAGE-A3-specific T-cells, identification of a dominant T-cell receptor, and effective cytotoxic activity against MAGE-A3-positive tumors, highlighting the success of their methodology in generating potent anti-tumor T-cells.
View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a hostile hematological malignancy under great danger of relapse and poor long-term survival rates, despite recent therapeutic advancements. To deal with this unfulfilled clinical necessity, innovative cell-based immunotherapies have surfaced as promising approaches to improve anti-tumor immunity and enhance patient outcomes. In this comprehensive review, we provide a detailed examination of the latest developments in cell-based immunotherapies for AML, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR)-engineered T-cell therapy, and natural killer (NK) cell-based therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!