Developing analytical methods to assure and control the quality of amino acids has long been a challenge for food ingredient, dietary supplement, and pharmaceutical industries due to the high polarity and the absence of chromophores in many amino acids; the situation worsens further by the lack of information of impurities that could potentially be introduced during the manufacturing processes. Herein we utilize a four-step strategy including impurity identification, method development, sample analysis, and targeted impurity detection and quantitation to demystify the impurity profiles of amino acids. The effectiveness of the approach is highlighted using histidine as an example. Analysis of histidine manufacturing and degradation processes led to the identification of 12 potential impurities of histidine, including amino acids (arginine, lysine, asparagine, aspartic acid, alanine, and glycine) and non-amino acid impurities (histamine, histidinol, 4-imidazoleacrylic acid, 4-imidazoleacetic acid, β-imidazolelactic acid, and urea). A HILIC method using Poroshell 120 HILIC-Z column (2.1 × 100 mm, 2.7 µm) and a mobile phase system consisting of ammonium formate buffer at pH 3.2 in water and 0.1% formic acid in acetonitrile coupled with a single quadrupole mass spectrometer was developed for the detection and quantitation of the proposed impurities. Evaluation of 11 commercial histidine samples using the developed method revealed distinct impurity profiles, as a fingerprint for each sample; seven of the 12 proposed impurities were detected in histidine samples tested. The developed method was evaluated in terms of specificity, linearity, range, accuracy, precision, and sensitivity (LOQ: 2.5-60.6 ng/mL) for its suitability for compendial applications. Given the high degree of overlap between the proposed and the detected impurities, the approach could be utilized to strengthen USP standards for controlling the quality of histidine. Extension of the strategy to the analysis of other amino acids is currently underway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2022.114936 | DOI Listing |
J Breath Res
January 2025
School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong, 266003, CHINA.
Lung cancer is one of the most common malignancy in the world, and early detection of lung cancer remains a challenge. The exhaled breath condensate (EBC) from lung and trachea can be collected totally noninvasively. In this study, our aim is to identify differential metabolites between non-small cell lung cancer (NSCLC) and control EBC samples and discriminate NSCLC group from control group by orthogonal projections to latent structures-discriminant analysis (OPLS-DA) models.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney.
Background And Objectives: Despite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP from chronic inflammation is known to exacerbate the progression of neurodegenerative diseases through the production of neurotoxic metabolites. Among the 8 KP metabolites, six of them, namely kynurenine (KYN), 3-hydroxylkynurenine (3HK), anthranilic acid (AA), kynurenic acid (KYNA), and quinolinic acid (QUIN), have been associated with neurodegeneration.
View Article and Find Full Text PDFPLoS One
January 2025
Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.
FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.
View Article and Find Full Text PDFPrim Care Companion CNS Disord
January 2025
Eisai Inc, Nutley, New Jersey.
Insomnia and some insomnia treatments can impact an individual's daytime functioning. Here, we performed post hoc analyses of patient-reported outcomes from a phase 3 clinical trial to assess the impact of lemborexant (LEM), a dual orexin receptor antagonist, on daytime functioning. Adults with insomnia were randomized 1:1:1 to receive placebo, LEM 5 mg (LEM5) or LEM 10 mg (LEM10) for 6 months.
View Article and Find Full Text PDFPLoS One
January 2025
Electrical and Computer Engineering, University of Denver, Denver, Colorado, United States of America.
Amino acid identification is crucial across various scientific disciplines, including biochemistry, pharmaceutical research, and medical diagnostics. However, traditional methods such as mass spectrometry require extensive sample preparation and are time-consuming, complex and costly. Therefore, this study presents a pioneering Machine Learning (ML) approach for automatic amino acid identification by utilizing the unique absorption profiles from an Elliptical Dichroism (ED) spectrometer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!