Wound dressing materials fabricated using biocompatible polymers have become quite relevant in medical applications, and one such material is bacterial cellulose (BC) with exceptional properties in terms of biocompatibility, high purity, crystallinity (∼88%), and high water holding capacity. However, the lack of antibacterial activity slightly restricts its application as a wound dressing material. In this work, polycaprolactone (PCL) was first impregnated into the BC matrix to fabricate flexible bacterial cellulose-based PCL membranes (BCP), which was further functionalized with antibiotics gentamicin (GEN) and streptomycin (SM) separately, to form wound dressing composite scaffolds to aid infectious wound healing. Fourier transform infrared spectroscopy (FT-IR) results confirmed the presence of characteristic PCL and cellulose peaks in the composite scaffolds at 1720 cm, 3400 cm, and 2895 cm, respectively, explaining the successful interaction of PCL with the BC matrix, which is further corroborated by scanning electron microscopy (SEM) images. X-ray diffraction (XRD) studies revealed the formation of highly crystalline BCP films (∼86%). In vitro studies of the BC and BCP scaffolds against baby hamster kidney (BHK-21) cells revealed their cytocompatible nature; also the wettability studies indicated the hydrophilicity of the developed scaffolds, qualifying the main criterion in wound dressing applications. Energy dispersive X-ray analysis (EDX) of the drug loaded scaffolds showed the presence of sulfur in the composites. The prepared scaffolds also exhibited excellent antimicrobial activity against and . The release profiles initially indicated a burst release (6 h) followed by controlled release of GEN (∼42%) and SM (∼58%) from the prepared scaffolds within 48 h. Hence, these results interpret that the prepared drug-functionalized cellulosic scaffolds have great potential as a wound dressing material in biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.2c00226 | DOI Listing |
Oper Orthop Traumatol
December 2024
Unfall‑, Hand- und Ellenbogenchirurgie, Klinik und Poliklinik für Orthopädie und Unfallchirurgie, Universitätsklinikum zu Köln, Köln, Deutschland.
Objective: Extraction of cancellous bone from the distal radius for reconstructive procedures on the hand.
Indications: All reconstructive procedures on the hand for which a corticocancellous and/or vascularized bone graft or a large amount of cancellous bone is not required.
Contraindications: Acute distal radius fracture, osteosynthesis material embedded in the distal radius, e.
Nanomaterials (Basel)
December 2024
Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
Irregularly shaped wounds cause severe chronic infections, which have attracted worldwide attention due to their high prevalence and poor treatment outcomes. In this study, we designed a new composite functional dressing consisting of traditional Chinese herb carbonized plant powder (CPP) and a polyacrylic acid (PAA)/polyethylenimine (PEI) gel. The rapid gelation of the dressing within 6-8 s allowed the gel to be firmly attached to an irregularly shaped wound surface and avoided powder detachment.
View Article and Find Full Text PDFEur Burn J
October 2024
St. Andrew's Centre for Plastic Surgery and Burns, Mid and South Essex NHS Foundation Trust, Chelmsford CM1 7E, UK.
(1) Background: Effective wound management aims for expedited healing, improved functional and scar outcomes, and reduced complications including infection. Delayed wound healing remains a prevalent problem in the elderly. Suprathel is a synthetic absorbable skin substitute and an attractive option in partial thickness wounds.
View Article and Find Full Text PDFGels
December 2024
Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211199, China.
Bacterial-infected skin wounds caused by trauma remain a significant challenge in modern medicine. Clinically, there is a growing demand for wound dressings with exceptional antibacterial activity and robust regenerative properties. To address the need, this study proposes a novel multifunctional dressing designed to combine efficient gas exchange, effective microbial barriers, and precise drug delivery capabilities, thereby promoting cell proliferation and accelerating wound healing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!