The high potential of exhaled breath for disease diagnosis has been highlighted in numerous studies. However, exhaled breath analysis is suffering from a lack of standardized sampling and analysis procedures, impacting the robustness of inter-laboratory results, and thus hampering proper external validation. The aim of this work was to verify compliance and validate the performance of two different comprehensive two-dimensional gas chromatography coupled to mass spectrometry platforms in different laboratories by monitoring probe metabolites in exhaled breath following the Peppermint Initiative guidelines. An initial assessment of the exhaled breath sampling conditions was performed, selecting the most suitable sampling bag material and volume. Then, a single sampling was performed using Tedlar bags, followed by the trapping of the volatile organic compounds into thermal desorption tubes for the subsequent analysis using two different analytical platforms. The thermal desorption tubes were first analyzed by a (cryogenically modulated) comprehensive two-dimensional gas chromatography system coupled to high-resolution time-of-flight mass spectrometry. The desorption was performed in split mode and the split part was recollected in the same tube and further analyzed by a different (flow modulated) comprehensive two-dimensional gas chromatography system with a parallel detection, specifically using a quadrupole mass spectrometer and a vacuum ultraviolet detector. Both the comprehensive two-dimensional gas chromatography platforms enabled the longitudinal tracking of the peppermint oil metabolites in exhaled breath. The increased sensitivity of comprehensive two-dimensional gas chromatography enabled to successfully monitor over a 6.5 h period a total of 10 target compounds, namely α-pinene, camphene, β-pinene, limonene, cymene, eucalyptol, menthofuran, menthone, isomenthone, and neomenthol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804543 | PMC |
http://dx.doi.org/10.1002/jssc.202200164 | DOI Listing |
Vet Sci
January 2025
Internal Medicine, Veterinary Medicine and Therapeutic Research Group, Faculty of Veterinary Science, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, 35413 Las Palmas de Gran Canaria, Spain.
Introduction And Objective: Rapid and efficient interpretation of echocardiographic findings is critical in clinical decision-making. This study aimed to design and validate a new graphical method, called CARDIOBOX, to represent echocardiographic findings in dogs.
Methods: A prospective, observational, exploratory cohort study was conducted over three years.
Brain Sci
January 2025
School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Backgrounds: Virtual reality (VR) has become a transformative technology with applications in gaming, education, healthcare, and psychotherapy. The subjective experiences in VR vary based on the virtual environment's characteristics, and electroencephalography (EEG) is instrumental in assessing these differences. By analyzing EEG signals, researchers can explore the neural mechanisms underlying cognitive and emotional responses to VR stimuli.
View Article and Find Full Text PDFFood Chem X
December 2024
Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
The Chinese proverb "One mountain, one flavor" reflects that raw pu-erh tea (RPT) from different tea-producing mountains (TPMs) possesses distinct flavor profiles. However, limited research has been conducted on the chemical composition underlying distinct flavor profiles. In this study, sensory evaluation and main phytochemical compositions revealed diverse aromas of RPTs from 26 TPMs.
View Article and Find Full Text PDFFood Res Int
February 2025
Tea Research Institute, China Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Hangzhou 310008, China. Electronic address:
Drying is the step that is to be used to adjust and control the formation of flavour and quality in black tea processing. In the present work, the comprehensive two-dimensional gas chromatography with mass spectrometry (GC × GC-MS) and gas chromatography olfactometry with mass (GC-O-MS) were used to determine the dynamic change of the volatile compounds in black tea during drying at 90, 120, 150 °C for 1 h. Results showed that the ratio of esters and aldehydes largely declined when temperature was elevated from 90 °C to 150 °C, while the ratio of heterocycles was increased to 22.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China.
Quasi-two-dimensional (quasi-2D) mixed-halide perovskites are a requisite for their applications in highly efficient blue perovskite light-emitting diodes (PeLEDs) owing to their strong quantum confinement effect and high exciton binding energy. The pace of quasi-2D blue PeLEDs is hindered primarily by two factors: challenges in precisely managing the phase distribution and defect-mediated nonradiative recombination losses. Herein, we utilize 2,2-diphenylethylamine (DPEA) with bulky steric hindrance to disturb the assembly process of a slender spacer host cation, 4-fluorophenylethylammonium (-F-PEA), enhancing phase distribution management in quasi-2D PeLEDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!