Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this article, we propose an algorithm that combines actor-critic-based off-policy method with consensus-based distributed training to deal with multiagent deep reinforcement learning problems. Specifically, convergence analysis of a consensus algorithm for a type of nonlinear system with a Lyapunov method is developed, and we use this result to analyze the convergence properties of the actor training parameters and the critic training parameters in our algorithm. Through the convergence analysis, it can be verified that all agents will converge to the same optimal model as the training time goes to infinity. To validate the implementation of our algorithm, a multiagent training framework is proposed to train each Universal Robot 5 (UR5) robot arm to reach the random target position. Finally, experiments are provided to demonstrate the effectiveness and feasibility of the proposed algorithm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2022.3191021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!