The potential adverse effects of UV-filter pollution in marine environments have been the focus of research in recent years. This systematic review aims to determine the extent of this emerging problem, both quantitatively and qualitatively, combining temporal and science mapping analyses to explore the development of the field of UV-filters in the marine environment (from 1990 to 2021), and to outline new research frontiers. The temporal trend analysis revealed an exponential growth of published studies over the last decade (70% since 2016), confirming the emerging role of this topic in environmental science. The meta-analysis determined that 4-methylbenzylidene-camphor (4-MBC) and benzophenone-3 (BP-3) are top-priority environmental pollutants due to their increasing usage and, in turn, a frequent occurrence in marine ecosystems. This meta-analysis determined the focus on these two contaminants for this review. A critical discussion of the applications, regulatory aspects, and environmental occurrences of these selected compounds was provided. The present study also focused on the most recent (2015-2021) field and laboratory studies investigating the ecotoxicological impacts of 4-MBC and BP-3 on marine invertebrates. This review highlights the need for more research efforts to fill the knowledge gaps on the realistic effects these compounds may have when considered individually, in combination, or as subsequent exposures. Overall, this review aims to establish guidelines for further studies to understand the effect of UV-filters on marine ecosystems and marine invertebrate communities.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-21913-4DOI Listing

Publication Analysis

Top Keywords

uv-filters marine
12
marine environments
8
marine invertebrate
8
invertebrate communities
8
review aims
8
meta-analysis determined
8
marine ecosystems
8
marine
7
review
5
environments review
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!