T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy caused by clonal proliferation of T-cell pre-cursors arising from the thymus. Although the optimized chemotherapy regimen could improve the outcome of such patients, some challenges such as higher risk for induction failure, early relapse and isolated central nervous system (CNS) relapse occurring in T-ALL patients are of great significance, leading to increased mortality rates. Long non-coding RNA (lncRNA) is a key component involved in cell signaling through a variety of mechanisms in regulating gene expression. Oncogenes and tumor suppressors are no exception and their expression can be affected by lncRNAs. In addition, accumulating researches in samples from T-ALL patients as well as pre-clinical studies in mice suggest that the expression profile of lncRNAs in T-ALL could be aberrant, resulting in deregulation of target genes and downstream signaling pathways. In addition, accumulating researches in samples from T-ALL patients as well as pre-clinical studies in mice suggest that the expression profile of lncRNAs in T-ALL could be aberrant, resulting in deregulation of target genes and downstream signaling pathways. These lncRNAs may be determinants of proliferation, apoptosis, and drug resistance observed in T-ALL. Thus, lncRNAs can be a good tool to develop novel strategies against cancer cells in the treatment of relapsed and refractory T-ALL. They can also act as promoting biomarkers in assessing T-ALL and differentiating between patients with poor prognosis and good prognosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12094-022-02886-9DOI Listing

Publication Analysis

Top Keywords

t-all patients
12
t-all
9
long non-coding
8
non-coding rna
8
t-cell acute
8
acute lymphoblastic
8
lymphoblastic leukemia
8
addition accumulating
8
accumulating researches
8
researches samples
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!