Aims/hypothesis: Induction of intercellular adhesion molecule-1 (ICAM-1) has been implicated in the development of macrovascular and microvascular diseases such as diabetic retinopathy. Lesions of diabetic retinopathy are unique to the retina but the reason for this is unclear, as all tissues are exposed to the same hyperglycaemic insult. We tested whether diabetes induces ICAM-1 on the luminal surface of endothelial cells to a greater extent in the retina than in other tissues and the role of vision itself in that induction.

Methods: Experimental diabetes was induced in C57Bl/6J, P23H opsin mutant and Gnat1 × Gnat2 double knockout mice using streptozotocin. The relative abundance of ICAM-1 on the luminal surface of endothelial cells in retina and other tissues was determined by conjugating anti-ICAM-1 antibodies to fluorescent microspheres (2 μm), injecting them intravenously and allowing them to circulate for 30 min. After transcardial perfusion, quantification of microspheres adherent to the endothelium in tissues throughout the body was carried out by fluorescent microscopy or flow cytometry. Mice injected with lipopolysaccharide (LPS) were used as positive controls. The difference in leucostasis between retinal and non-retinal vasculature was evaluated.

Results: Diabetes significantly increased ICAM-1-mediated adherence of microspheres to retinal microvessels by almost threefold, independent of sex. In contrast, diabetes had a much smaller effect on endothelial ICAM-1 in other tissues, and more tissues showed a significant induction of endothelial ICAM-1 with LPS than with diabetes. The diabetes-induced increase in endothelial ICAM-1 in retinal vasculature was inhibited by blocking phototransduction in photoreceptor cells. Diabetes significantly increased leucostasis in the retina by threefold compared with a non-ocular tissue (cremaster).

Conclusions/interpretation: The diabetes-induced upregulation of ICAM-1 on the luminal surface of the vascular endothelium varies considerably among tissues and is highest in the retina. Induction of ICAM-1 on retinal vascular endothelial cells in diabetes is influenced by vision-related processes in photoreceptor cells. The unique presence of photoreceptors in the retina might contribute to the greater susceptibility of this tissue to vascular disease in diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481679PMC
http://dx.doi.org/10.1007/s00125-022-05719-0DOI Listing

Publication Analysis

Top Keywords

icam-1 luminal
16
luminal surface
16
endothelial cells
16
surface endothelial
12
retina tissues
12
endothelial icam-1
12
icam-1
9
diabetes
9
greater extent
8
tissues
8

Similar Publications

Modeling lung endothelial dysfunction in sepsis-associated ARDS using a microphysiological system.

Physiol Rep

July 2024

Division of Allergy, Pulmonary and Critical Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA.

Endothelial dysfunction is a critical feature of acute respiratory distress syndrome (ARDS) associated with higher disease severity and worse outcomes. Preclinical in vivo models of sepsis and ARDS have failed to yield useful therapies in humans, perhaps due to interspecies differences in inflammatory responses and heterogeneity of human host responses. Use of microphysiological systems (MPS) to investigate lung endothelial function may shed light on underlying mechanisms and targeted treatments for ARDS.

View Article and Find Full Text PDF
Article Synopsis
  • Stem cell therapy shows promise for treating inflammatory diseases, but delivering cells to specific sites without unwanted distribution remains a challenge.
  • A new system using dendrimer nanocarriers acts like a GPS, guiding stem cells to inflamed areas by utilizing specific cell surface proteins to bind to activated endothelium.
  • In experiments, this approach successfully directed mesenchymal stem cells to atherosclerotic regions in mice, highlighting its potential for improving targeted therapies in regenerative medicine.
View Article and Find Full Text PDF

Acute respiratory distress syndrome due to non-pulmonary causes exhibits prominent endothelial activation which is challenging to assess in critically ill patients. Preclinical models of sepsis and ARDS have failed to yield useful therapies in humans, perhaps due to interspecies differences in inflammatory responses. Use of microphysiological systems (MPS) offer improved fidelity to human biological responses and better predict pharmacological responses than traditional culture.

View Article and Find Full Text PDF

The authors determined the effect of the GLP-1 receptor agonist liraglutide on endothelial surface expression of vascular cell adhesion molecule (VCAM)-1 in murine apolipoprotein E knockout atherosclerosis. Contrast-enhanced ultrasound molecular imaging using microbubbles targeted to VCAM-1 and control microbubbles showed a 3-fold increase in endothelial surface VCAM-1 signal in vehicle-treated animals, whereas in the liraglutide-treated animals the signal ratio remained around 1 throughout the study. Liraglutide had no influence on low-density lipoprotein cholesterol or glycated hemoglobin, but reduced TNF-α, IL-1β, MCP-1, and OPN.

View Article and Find Full Text PDF

Immunotherapies, including anti-PD-1 immune checkpoint blocking (ICB) antibodies, have revolutionized the treatment of many solid malignancies. However, their efficacy in breast cancer has been limited to a subset of patients with triple-negative breast cancer, where ICBs are routinely combined with a range of cytotoxic and targeted agents. Reliable biomarkers predictive of the therapeutic response to ICB in breast cancer are critically missing, though a combination response has been associated with immunogenic cell death (ICD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!