Quantifying species trophic interaction strengths is crucial for understanding community dynamics and has significant implications for pest management and species conservation. DNA-based methods to identify species interactions have revolutionized these efforts, but a significant limitation is the poor ability to quantify the strength of trophic interactions, that is the biomass or number of prey consumed. We present an improved pipeline, called Lazaro, to map unassembled shotgun reads to a comprehensive arthropod mitogenome database and show that the number of prey reads detected is quantitatively predicted from the prey biomass consumed, even for indirect predation. Two feeding bioassays were performed: starved coccinellid larvae consuming different numbers of aphids (Prey Quantity bioassay), and starved coccinellid larvae consuming a chrysopid larvae that had consumed aphids (Direct and Indirect Predation bioassay). Prey taxonomic assignment against a mitochondrial genome database had high accuracy (99.8% positive predictive value) and the number of prey reads was directly related to the number of prey consumed and inversely related to the elapsed time since consumption with high significance (r  = .932, p = 4.92E-6). Aphids were detected up to 6 h after direct predation plus 3 h after indirect predation (9 h in total) and detection was related to the predator-specific decay rates. Lazaro enabled quantitative predictions of prey consumption across multiple trophic levels with high taxonomic resolution while eliminating all false positives, except for a few confirmed contaminants, and may be valuable for characterizing prey consumed by field-sampled predators. Moreover, Lazaro is readily applicable for species diversity determination from any degraded environmental DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1755-0998.13690DOI Listing

Publication Analysis

Top Keywords

number prey
16
prey consumed
12
indirect predation
12
prey
9
multiple trophic
8
trophic levels
8
unassembled shotgun
8
shotgun reads
8
prey reads
8
starved coccinellid
8

Similar Publications

A Lateral Line Specific Mucin Involved in Cupula Growth and Vibration Detection in Zebrafish.

Int J Mol Sci

January 2025

Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai 201306, China.

The lateral line system in fish is crucial for detecting water flow, which facilitates various behaviors such as prey detection, predator avoidance, and rheotaxis. The cupula, a gelatinous structure overlaying the hair cells in neuromasts, plays a key role in transmitting mechanical stimuli to hair cells. However, the molecular composition of the cupula matrix remains poorly understood.

View Article and Find Full Text PDF

Most species of migrating birds use a combination of innate vector-based orientation programs and social information to facilitate accurate navigation during their life. A number of various interspecies hybridisations have been reported in birds. The traits of parents are expressed in hybrids in typical ways which are either intermediate, combined or heterotic.

View Article and Find Full Text PDF

The Effect of Wing-Flashing Behavior on Prey Capture Performance of San Clemente Loggerhead Shrikes.

Integr Org Biol

December 2024

Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd, San Marcos, CA 92096, USA.

Loggerhead shrikes () are medium-sized predatory songbirds that feed on arthropods and vertebrates. Prior to attacking their prey, shrikes have been observed performing "wing-flashing" behavior, consisting of rapid fluttering of the wings that seems to emphasize the white patches on their dorsal surfaces. We sought to quantify this behavior by analyzing videos of San Clemente loggerhead shrikes attacking insect and vertebrate prey, to understand whether and how wing-flashing affects prey capture performance.

View Article and Find Full Text PDF

Tandem duplication of genes can play a critical role in the evolution of functional novelty, but our understanding is limited concerning gene duplication's role in coevolution between species. Much is known about the evolution and function of tandemly duplicated snake venom genes, however the potential of gene duplication to fuel venom resistance within prey species is poorly understood. In this study, we characterize patterns of gene duplication of the SERPINA subfamily of genes across in vertebrates and experimentally characterize functional variation in the SERPINA3-like paralogs of a wild rodent.

View Article and Find Full Text PDF

Subsets of extraocular motoneurons produce kinematically distinct saccades during hunting and exploration.

Curr Biol

January 2025

Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK. Electronic address:

Animals construct diverse behavioral repertoires by moving a limited number of body parts with varied kinematics and patterns of coordination. There is evidence that distinct movements can be generated by changes in activity dynamics within a common pool of motoneurons or by selectively engaging specific subsets of motoneurons in a task-dependent manner. However, in most cases, we have an incomplete understanding of the patterns of motoneuron activity that generate distinct actions and of how upstream premotor circuits select and assemble such motor programs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!