In this study, () was used as an indicator bacterium treated with five different concentrations of chlorine (0.1; 0.5; 1.0; 2.0, and 5.0 mg/L) and without chlorine (0.0 mg/L) to evaluate the changes in the DOM characteristics. The dissolved organic carbon (DOC) concentration initially increased along with the chlorine concentrations and decreased after 24 h (0.0 and 0.1 mg/L) and 168 h (0.5; 1.0; 2.0 and 5.0 mg/L). Ultra-violet absorbance at 260 nm (UV) showed that the absorbance decreased for control without chlorine (0.0 mg/L) and 0.1 mg/L chlorine, while increased for other concentrations of chlorine within 120 h. The DOC and UV results indicated that the high concentrations of chlorine initiated high contents of DOM which contained more humic-like molecules than the DOM released from without chlorine. Fluorescence excitation-emission matrix (EEM) analysis suggested that the DOM released from without chlorine enriched with protein-like substances, whereas the fulvic-like and humic-like substances more intensified in the DOM for the high concentrations of chlorine (>1.0 mg/L). The molecular weight distribution of DOM showed that the intensity of high molecular weight substances and polydispersity increased along with chlorine concentration and contact time, whereas the low molecular weight substances were relatively higher in the DOM for control without chlorine. The obtained results of this study would be useful for a better understanding of the variation of DOM during treatment and could be used as an important reference for optimizing the operation condition of the water treatment plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2022.2102939 | DOI Listing |
Toxics
December 2024
School of Resource and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
The rapid development of the global chemical industry has led to widespread groundwater contamination, with frequent pollution incidents posing severe threats to water safety. However, there has been insufficient assessment of the health risks posed by chlorinated hydrocarbon contamination in groundwater around chemical industrial parks. This study evaluates the chlorinated hydrocarbon contamination in groundwater at a chemical park and conducts a multi-pathway health risk assessment, identifying the key risk pollutants.
View Article and Find Full Text PDFToxics
November 2024
Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China.
Short-chain chlorinated paraffins (SCCPs) are a persistent organic pollutant, and limited information is available on their bioaccumulation and trophic transfer, which would be affected by carbon chain length, chlorine content, and hydrophobicity. In this study, relevant data on SCCPs in water, sediments, and organisms collected from Laizhou Bay were analyzed to investigate the specific distribution of SCCPs and their bioaccumulation and trophic transfer. In water and sediments, the average SCCP concentrations (ΣSCCPs) were 362.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute for Culture Heritage and History of Science and Technology, University of Science and Technology Beijing, Beijing 100083, China.
Dechlorination is a crucial strategy for archeological bronze stabilization to resist corrosion induced by cuprous chloride (CuCl). Conventional samples, either archeological or simulated ones, have deficiencies in revealing dechlorination mechanisms for their complex rust layers and difficulties in quantifying chlorine content. In this work, samples with fixed chlorine amounts were prepared by compressing method to solve overcomplicated and unquantifiable problems.
View Article and Find Full Text PDFFoods
December 2024
IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain.
Stems are a major by-product of mushroom production. This study optimizes the transformation of stems (ABS) and stems (POS) into flour. ABS are attached to the peat, so, the process was divided into two steps.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Iodinated DBPs (I-DBPs), many more toxic than regulated chlorinated and/or brominated DBPs, are a major challenge in the supply of safe drinking water. While over 800 DBPs have been identified, the occurrence and precursors of toxic I-DBPs remain poorly understood. Herein, natural organic matter from two raw drinking waters was fractionated using ultrafiltration membranes into different groups based on molecular weight (MW).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!