Anomalous Infrared Absorbance of S═O: A Perturbation Study of α-C-H/D.

J Phys Chem B

Department of Condensed Matter Physics and Materials Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India.

Published: July 2022

AI Article Synopsis

  • The study explores how different solvents affect the IR spectra of S═O vibrational probes, indicating the strength of electric fields and hydrogen bonding.
  • Experimental results show that α-H/D isotopic interactions with various solvents reveal key details about microsolvation, despite complex overlapping spectral bands.
  • The research highlights that while the S═O vibrational mode remains unchanged with non-coordinating solvents, it undergoes significant alterations in strongly coordinating polar solvents, providing valuable insights for chemistry and biology applications.

Article Abstract

Solvatochromic shifts of S═O vibrational probes describe the strength of the surrounding electric fields and the hydrogen bonding status. Herein, we demonstrated how the solvents alter the infrared (IR) spectra of the S═O vibrating mode. The experimental measurement of the involvement of α-H/D isotopic interactions with different solvents and their effects on the IR absorbance spectra of the vibrational probe provides detailed knowledge of the microsolvation environment despite the complexity of overlapping bands in the spectra. Herein, we discover how the solvents interact differently with DMSO and DMSO-, while being electronically and structurally the same. Interestingly, the IR spectrum of the S═O mode remains unaltered during α-isotopic replacement in the presence of aprotic solvents (acetone, acetonitrile, and dichloromethane), but in strongly coordinating polar solvents (DO), it is altered remarkably. There is a lack of quantitative information about the influence of the α-H atom or α-isotopic substitution on the vibrational probe in the literature. Our experiments provide a detailed molecular understanding of the structure of DMSO in DMSO-solvent binary mixtures. As DMSO plays an important role in virtually all subdisciplines of chemistry and biology, we believe that our work will be of interest to a large diversity of studies in these fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.2c01374DOI Listing

Publication Analysis

Top Keywords

vibrational probe
8
solvents
5
anomalous infrared
4
infrared absorbance
4
s═o
4
absorbance s═o
4
s═o perturbation
4
perturbation study
4
study α-c-h/d
4
α-c-h/d solvatochromic
4

Similar Publications

Background: Peri-implantitis is characterized as a pathological change in the tissues around dental implants. Fourier-transform infrared spectroscopy (FTIR) provides molecular information from optical phenomena observed by the vibration of molecules, which is used in biological studies to characterize changes and serves as a form of diagnosis.

Aims: this case-control study evaluated the peri-implant disease by using FTIR spectroscopy with attenuated total reflectance in the fingerprint region.

View Article and Find Full Text PDF

The methoxy radical, CHO, has long been studied experimentally and theoretically by spectroscopists because it displays a weak Jahn-Teller effect in its electronic ground state, combined with a strong spin-orbit interaction. In this work, we report an extension of the measurement of the pure rotational spectrum of the radical in its vibrational ground state in the submillimeter-wave region (350-860 GHz). CHO was produced by H-abstraction from methanol using F atoms, and its spectrum was probed in absorption using an association of source-frequency modulation and Zeeman modulation spectroscopy.

View Article and Find Full Text PDF

Two-dimensional infrared (2D IR) spectroscopy is a powerful technique for measuring molecular heterogeneity and dynamics with a high spatiotemporal resolution. The methods can be applied to characterize specific residues of proteins by incorporating frequency-resolved vibrational labels. However, the time scale of dynamics that 2D IR spectroscopy can measure is limited by the vibrational label's excited-state lifetime due to the decay of 2D IR absorption bands.

View Article and Find Full Text PDF

Blades are the core components of rotating machinery, and the blade vibration status directly impacts the working efficiency and safe operation of the equipment. The blade tip timing (BTT) technique provides a solution for blade vibration monitoring and is currently a prominent topic in research on blade vibration issues. Nevertheless, the non-stationary factors present in actual engineering applications introduce inaccuracies in the BTT technique, resulting in blade vibration measurement errors.

View Article and Find Full Text PDF

Spectrochemical analysis of trace elements in complex matrices is crucial across various fields of science, industry, and technology. However, this analysis is often hindered by background interference and the challenge of detecting ultralow analyte concentrations. Surface Enhanced Infrared Absorption (SEIRA) spectroscopy is emerging as a viable technique to address these challenges as it can successfully reveal soluble and unmodified analytes in a label-free manner through their interactions with a bioreceptor following site-specific labeling with small infrared-active probes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!