Streptococcus pneumoniae, an opportunistic human pathogen, is the leading cause of community-acquired pneumonia and an agent of otitis media, septicemia, and meningitis. Although genomic and transcriptomic studies of S. pneumoniae have provided detailed perspectives on gene content and expression programs, they have lacked information pertaining to the translational landscape, particularly at a resolution that identifies commonly overlooked small open reading frames (sORFs), whose importance is increasingly realized in metabolism, regulation, and virulence. To identify protein-coding sORFs in S. pneumoniae, antibiotic-enhanced ribosome profiling was conducted. Using translation inhibitors, 114 novel sORFs were detected, and the expression of a subset of them was experimentally validated. Two loci associated with virulence and quorum sensing were examined in deeper detail. One such sORF, , overlaps with the noncoding RNA that was previously implicated in pathogenesis. Targeted mutagenesis parsing from revealed that is responsible for the fitness defect seen in a murine nasopharyngeal colonization model. Additionally, two novel sORFs located adjacent to the quorum sensing receptor were found to impact regulatory activity. Our findings emphasize the importance of sORFs present in the genomes of pathogenic bacteria and underscore the utility of ribosome profiling for identifying the bacterial translatome. This work employed pleuromutilin-assisted ribosome profiling using retapamulin (Ribo-RET) to identify genome-wide translation start sites in the human pathogen Streptococcus pneumoniae. We identified 114 unannotated intergenic small open reading frames (sORFs). The described procedures and data sets provide a model for microbiologists seeking to explore the translational landscape of bacteria. The biological roles of four sORF examples are characterized: two control the regulation of a cell-cell communication (quorum sensing) system, one contributes to the ability of S. pneumoniae to colonize the upper respiratory tract of mice, and a fourth governs the translation of PrfB, a protein enabling ribosome release at stop codons. We propose that Ribo-RET is a valuable approach to identifying unstudied microproteins and difficult-to-find pheromone genes used by Gram-positive organisms, whose genomes are replete with pheromone receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426450 | PMC |
http://dx.doi.org/10.1128/mbio.01247-22 | DOI Listing |
Infect Drug Resist
December 2024
Subdean Office, Anqing First People's Hospital of Anhui Medical University, Anqing City, Anhui Province, People's Republic of China.
Purpose: To evaluate the clinical characteristics, antimicrobial resistance (AMR) phenotypes and genotypes, and homology features of carbapenem-resistant (CRAB) in intensive care unit (ICU) and to provide basis for effectively prevention, control and treatment of nosocomial infections caused by CRAB.
Methods: A total of 39 CRAB strains isolated from hospitalized patients in the ICU and neurosurgical ICU (NICU) between 2020 and 2023 were subjected to antimicrobial susceptibility testing and whole-genome sequencing (WGS). Virulence factor genes (VFGs), antimicrobial resistance genes (ARGs), multilocus sequencing typing (MLST), complete genome multilocus sequencing typing (cgMLST), average nucleotide identity (ANI), and single nucleotide polymorphism (SNP) analyses were performed using WGS.
Cell Surf
June 2025
Department of Biology, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tulu Awuliya, Ethiopia.
has evolved a sophisticated regulatory system to control its virulence. One of the main roles of this interconnected network is to sense and respond to diverse environmental signals by altering the synthesis of virulence components required for survival in the host, including cell surface adhesins, extracellular enzymes and toxins. The accessory gene regulator (agr), a quorum sensing system that detects the local concentration of a cyclic peptide signaling molecule, is one of the well-studied of these .
View Article and Find Full Text PDFACS Synth Biol
January 2025
School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
DegSU quorum sensing (QS) system enables autoinducible expression of recombinant proteins in . However, insufficient promoter strength and a complex regulatory circuit limit its practical application. Here, the QS-responsive promoter P was modified by core region mutation, upstream truncation, and addition of activating binding sites, yielding P with a 118.
View Article and Find Full Text PDFInfect Disord Drug Targets
December 2024
Department of Pharmacology and Biotechnology, Eminent College of Pharmaceutical Technology, Barbaria, Barasat, Kolkata, 700126, West Bengal, India.
Multicellular surface-attached populations of bacteria embedded in the extracellular matrix are known as biofilms. Bacteria generally preferred to grow as biofilms. Quorum sensing (QS), detection of density of cell population through gene regulation, has been found to play an important role in the production of biofilms.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Microbiology Lab, Department of Zoology, Government College University.
Antibiotic resistance is a world wide problem mainly in developing countries. In this work, coelomic fluid (PCF) and paste (PBP) of Pheretima posthuma was assessed for its potential as antibiofilm and anti-quorum sensing (QS) agent against pathogenic bacterial biofilms. PCF and PBP were extracted and biofilm formation time kinetics was examined using crystal violet staining method by utilizing four bacterial isolates in bispecies biofilm (06 combinations; MH5-MH10) and multi species biofilms (05 combinations; MH11-MH15).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!