A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-Assembled Monolayers for Improved Charge Injection of Silver Back Electrodes in Inverted Organic Electronic Devices. | LitMetric

Self-assembled monolayers (SAMs) formed from thiol compounds bound to Ag and Au electrodes have been used as an important strategy in improving the stability and efficiency of optoelectronic devices. Thiol compounds provide only one binding site with the metal electrode which limits their influence. Dithiolane/dithiol compounds can provide multiple binding sites and could be useful in enhancing the performance of the device. In this study, inverted organic semiconducting hole-only devices were fabricated by using Ag back electrodes in conjunction with SAMs formed from disulfide lipoic acid-based compounds and were compared to a long aliphatic chain thiol. The binding and the electronic properties as well as electrical characteristics of the SAMs on silver were studied to look at the influence of their structure on charge injection in the organic semiconductor devices. It was found that the SAMs formed with (±)-α-lipoic acid, isolipoic acid, and (±)-4-phenylbutyl 5-(1,2-dithiolan-3-yl) pentanoate significantly improved the charge injection by either changing the work function of the Ag or altering the physical interaction between the polymer and the metal surface. This study may lead to an understanding of how the nature of the functional groups of the SAM and the number of bonds formed between each SAM molecule and the metal electrode influence the contact resistance and the performance of organic semiconductor devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c07610DOI Listing

Publication Analysis

Top Keywords

charge injection
12
sams formed
12
self-assembled monolayers
8
improved charge
8
inverted organic
8
thiol compounds
8
compounds provide
8
metal electrode
8
organic semiconductor
8
semiconductor devices
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!