Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As human activity in space continues to increase, understanding how biological assets respond to spaceflight conditions is becoming more important. Spaceflight conditions include exposure to ionizing radiation, microgravity, spacecraft vibrations and hypervelocity; all of which can affect the viability of biological organisms. Previous studies have shown that melanin-producing fungi are capable of surviving the vacuum of space and Mars-simulated conditions in Low Earth Orbit. This survival has been associated in part with the protective effects of melanin, but a comparison of fungal viability in the presence or absence of melanin following spaceflight has never been tested. In this study, we evaluated the protective effects of melanin by comparing the viability of melanized and non-melanized clones of Cryptococcus neoformans yeasts following a roundtrip to the International Space Station. Yeast colonies were placed inside two MixStix silicone tubes; one stayed on Earth and the other was transported inside for 29 days before returning to Earth. Post-flight analysis based on colony-forming unit numbers shows that melanized yeast viability was 50% higher than non-melanized yeasts, while no difference was observed between the Earth-bound control samples. The results suggest that fungal melanin could increase the lifespan of biological assets in space.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326845 | PMC |
http://dx.doi.org/10.1111/1758-2229.13078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!