Acoustic tweezers facilitate a noninvasive, contactless, and label-free method for the precise manipulation of micro objects, including biological cells. Although cells are exposed to mechanical and thermal stress, acoustic tweezers are usually considered as biocompatible. Here, we present a holistic experimental approach to reveal the correlation between acoustic fields, acoustophoretic motion and heating effects of particles induced by an acoustic tweezer setup. The system is based on surface acoustic waves and was characterized by applying laser Doppler vibrometry, astigmatism particle tracking velocimetry and luminescence lifetime imaging. measurements with high spatial and temporal resolution reveal a three-dimensional particle patterning coinciding with the experimentally assisted numerical result of the acoustic radiation force distribution. In addition, a considerable and rapid heating up to 55 °C depending on specific parameters was observed. Although these temperatures may be harmful to living cells, counter-measures can be found as the time scales of patterning and heating are shown to be different.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2lc00200k | DOI Listing |
Placenta
December 2024
Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:
Introduction: MicroRNAs (miRNAs), packaged within extracellular vesicles (EVs), have been used to interrogate the pathogenesis of preeclampsia and to identify its biomarkers. We have previously shown that miRNA species were differentially expressed in small plasma EVs from women with preeclampsia vs healthy controls. We sought to assess the use of rapid technologies for isolation of plasma and urine EVs from parturients with preeclampsia and determine differences in the expression of selected EV miRNA species.
View Article and Find Full Text PDFF S Sci
December 2024
The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA. Electronic address:
Adv Mater Technol
September 2024
Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA.
Tweezers based on optical, electric, magnetic, and acoustic fields have shown great potential for contactless object manipulation. However, current tweezers designed for manipulating millimeter-sized objects such as droplets, particles, and small animals, exhibit limitations in translation resolution, range, and path complexity. Here, we introduce a novel acoustic vortex tweezers system, which leverages a unique airborne acoustic vortex end effector integrated with a three degree-of-freedom (DoF) linear motion stage, for enabling contactless, multi-mode, programmable manipulation of millimeter-sized objects.
View Article and Find Full Text PDFMicromachines (Basel)
October 2024
School of Microelectronics, Xidian University, Xi'an 710071, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!