Salt-inducible kinases (SIKs) are serine/threonine kinases belonging to the AMP-activated protein kinase (AMPK) family. Accumulating evidence indicates that SIKs phosphorylate multiple targets, including histone deacetylases (HDACs) and cAMP response element-binding protein (CREB)-regulated transcriptional coactivators (CRTCs), to coordinate signaling pathways implicated in metabolism, cell growth, proliferation, apoptosis, and inflammation. These pathways downstream of SIKs are altered not only in pathologies like cancer, systemic hypertension, and inflammatory diseases, but also in pulmonary arterial hypertension (PAH), a multifactorial disease characterized by pulmonary vasoconstriction, inflammation and remodeling of pulmonary arteries owing to endothelial dysfunction and aberrant proliferation of smooth muscle cells (SMCs). In this opinion article, we present evidence of SIKs as modulators of key signaling pathways involved in PAH pathophysiology and discuss the potential of SIKs as therapeutic targets for PAH, emphasizing the need for deeper molecular insights on PAH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tips.2022.06.008 | DOI Listing |
Drug Discov Today
December 2024
Cell Signaling and Cancer Biology Laboratory, Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India. Electronic address:
Salt-inducible kinases (SIKs), a group of serine/threonine kinases in the adenosine monophosphate-activated protein kinase (AMPK) family, exist in three isoforms: SIK1, SIK2 and SIK3. These kinases are crucial in various physiological processes. Emerging evidence indicates that dysregulation of SIK expression and activation significantly contributes to carcinogenesis by promoting cellular proliferation, metabolic dysregulation, metastasis and chemoresistance through the modulation of crucial signaling pathways.
View Article and Find Full Text PDFSleep
December 2024
International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
Study Objectives: Sleep/wakefulness is regulated by intracellular signaling pathways composed of protein kinases such as salt-inducible kinase 3 (Sik3). Sik3-deficiency in neurons decreases NREM sleep time and electroencephalogram (EEG) delta power during NREM sleep, while Sik3Slp mice lacking a protein kinase A (PKA)-phosphorylation site, S551, show hypersomnia phenotype. In this study, we examined how a phosphomimetic mutation of the 221st threonine residue (T221E), which provides a partial (weak) constitutive activity of the kinase, affects sleep/wakefulness and circadian behavior.
View Article and Find Full Text PDFCancer Cell
December 2024
Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. Electronic address:
Immunosuppression commonly disrupts the homeostasis of mutated normal skin, leading to widespread skin dysplasia and field cancerization. However, the immune system's role in maintaining the normal state of mutated tissues remains uncertain. Herein, we demonstrate that T cell immunity to cutaneotropic papillomaviruses promotes the homeostasis of ultraviolet radiation-damaged skin.
View Article and Find Full Text PDFAnticancer Drugs
December 2024
Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College.
Pancreatic cancer ranks fourth among cancer-related deaths with a low 5-year overall survival rate of less than 13%. At present, treatment of pancreatic cancer is still based on chemotherapy, but the efficacy is limited. Thus, a novel therapeutic agent for pancreatic cancer therapy is urgently needed.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
November 2024
Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland.
Purpose: Localized diseases can be affected by and affect the systemic environment via blood circulation. In this study, we explored the differences in circulating serum mRNAs between patients with wet AMD (wAMD) and controls.
Methods: Blood samples were obtained from 60 Finnish patients with wAMD and 64 controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!