A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Does maritime Antarctic permafrost harbor environmental fungi with pathogenic potential? | LitMetric

We assessed the potentially pathogenic fungi present in Antarctic permafrost and the overlying active layer on King George, Robert, Livingston and Deception Islands in the South Shetland Islands archipelago, maritime Antarctica. Permafrost and active layer sub-samples were incubated at 37 °C to select fungi able to grow inside the human body. A total of 67 fungal isolates were obtained, 27 from the permafrost and 40 from the active layer. These represented 18 taxa of the genera Alternaria, Aspergillus, Curvularia, Penicillium, Rhodotorula and Talaromyces. The majority of fungi detected occurred exclusively either in the permafrost or the active layer at each site. Only Aspergillus thermomutatus, Penicillium cf. chrysogenum and Rhodotorula cf. mucilaginosa were present in both permafrost and active layer samples from the same site. The yeast R. cf. mucilaginosa was recovered from both in at least two sites. The genus Penicillium was the most abundant and widely distributed genus in both permafrost and active layer samples across the sites sampled. All fungal isolates were screened using enzymatic, pH and antifungal assays to identify their virulence potential. Aspergillus hiratsukae, A. thermomutatus and R. cf. mucilaginosa, known human opportunistic fungi, were identified, displayed phospholipase, esterase, proteinase and hemolytic activities. All three also displayed the ability to grow at 40°, 45° and/or 50 °C and resistance to fluconazole and itraconazole; additionally, R. cf. mucilaginosa showed resistance to amphotericin B and viability after 100 d at -80 °C. A. thermomutatus UFMGCB 17415 killed the entire larvae of Tenebrio molitor in six days and R. cf. mucilaginosa UFMGCB 17448 and 17473 in three and four days, respectively. The melting of maritime Antarctic permafrost as a result of climate change may threaten the release of wild strains of pathogenic fungi geographically isolated for long time, which may in turn be transported within and beyond Antarctica by different biological and non-biological vectors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.funbio.2022.04.003DOI Listing

Publication Analysis

Top Keywords

active layer
24
permafrost active
20
antarctic permafrost
12
maritime antarctic
8
permafrost
8
pathogenic fungi
8
fungal isolates
8
layer samples
8
fungi
6
active
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!