Reported here is a rapid and simplified approach for modeling the temporal evolution of the plasma temperature. The use of only two emission lines makes this technique simple, accurate, and fast. Usually, multiple emission lines are required for estimating plasma temperature using Boltzmann/Saha-Boltzmann plots. But, in several cases, either multiple emission lines are not available for every element and/or sufficient lines are not free from self-absorption effect. The proposed method greatly increases the possibility of plasma temperature estimation as it requires only two lines. A brass target was used to generate the plasma, using a conventional single-pulse nanosecond laser of ∼7 ns pulse duration at an excitation wavelength of 532 nm. The initial temperature of plasma and the radiation decay constant were estimated using a proposed intensity ratio model. The results were estimated using various combinations of emission lines, which show an excellent agreement with the values obtained using the previously reported method.

Download full-text PDF

Source
http://dx.doi.org/10.1177/00037028221117534DOI Listing

Publication Analysis

Top Keywords

emission lines
16
plasma temperature
12
multiple emission
8
plasma
6
lines
6
temperature
5
time-dependent intensity
4
intensity ratio-based
4
ratio-based approach
4
approach estimating
4

Similar Publications

A bio-fabrication approach is a novel way to develop chitosan-stabilized magnesium oxide nanomaterials (cMgO-NMs). The process involves utilizing polymeric chitosan as the reducing and stabilizing agent. The characteristics of the developed cMgO-NMs were determined using various spectroscopical techniques.

View Article and Find Full Text PDF

Objective: Timing calibration is essential for positron emission tomography (PET) system as it enhances timing resolution to improve image quality. Traditionally, positron sources are employed for timing calibration. However, the photons emitted by these sources travel in opposite directions, necessitating that positrons annihilate at multiple locations to collect coincidence data across a greater number of lines of response (LORs).

View Article and Find Full Text PDF

This work describes the design and implementation of optics for EXCLAIM, the EXperiment for Cryogenic Large-Aperture Intensity Mapping. EXCLAIM is a balloon-borne telescope that will measure integrated line emission from carbon monoxide at redshifts z < 1 and ionized carbon ([CII]) at redshifts z = 2.5 - 3.

View Article and Find Full Text PDF

Differential expression of osteoblast-like cells on self-organized titanium dioxide nanotubes.

J Dent Sci

December 2024

Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.

Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.

View Article and Find Full Text PDF

Azulene-1,3-bis(semicarbazone), , and azulene-1,3-bis(thiosemicarbazone), , were synthesized by the acid-catalyzed condensation reactions of semicarbazide and thiosemicarbazide, respectively, with azulene-1,3-dicarboxaldehyde in stoichiometric amounts. Compounds and were identified by high-resolution mass spectrometry and characterized by IR, H-NMR, C-NMR, and UV-vis spectroscopic techniques. Crystal structure determination of azulene-1,3-bis(thiosemicarbazone) shows that the thiosemicarbazone units exhibit a -closed conformation, with both arms oriented in the same direction and adopting an configuration with respect to the imine linkages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!