A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting root zone soil moisture using observations at 2121 sites across China. | LitMetric

Predicting root zone soil moisture using observations at 2121 sites across China.

Sci Total Environ

Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographical Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences (CAS), A11 Datun Road, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Published: November 2022

Root zone soil moisture (RZSM) is particularly useful for understanding hydrological processes, plant-land-atmosphere exchanges, and agriculture- and climate-related research. This study aims to estimate RZSM across China by using a one-parameter (T) exponential filter method (EF method) together with a random forest (RF) regionalization approach and by using a large dataset containing in situ observations collected at 2121 sites across China. First, at each site, T is optimized at each of four soil layers (10-20 cm, 20-30 cm, 30-40 cm and 40-50 cm) by using 0-10-cm soil layer observations and the corresponding calibration layers. Second, an RF classifier is built for each layer according to the calibrated T values and 14 soil, climate and vegetation parameters across 2121 sites. Third, the calibrated T at each soil layer is regionalized with an established RF classifier. Spatial T maps are given for each soil layer across China. Our results show that the EF method performs reasonably well in predicting RZSM at the 10-20-cm, 20-30-cm, 30-40-cm and 40-50-cm layers, with Nash-Sutcliffe efficiency (NSE) medians of 0.73, 0.52, 0.38 and 0.27, respectively, between the observations and estimations. The T parameter shows a spatial pattern in each soil layer and is largely controlled by climate regimes. This study offers an improved RZSM estimation method using a large dataset containing in situ observations; the proposed method also has the potential to be used in other parts of the world.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.157425DOI Listing

Publication Analysis

Top Keywords

soil layer
16
2121 sites
12
root zone
8
soil
8
zone soil
8
soil moisture
8
sites china
8
large dataset
8
dataset situ
8
situ observations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!