Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Root zone soil moisture (RZSM) is particularly useful for understanding hydrological processes, plant-land-atmosphere exchanges, and agriculture- and climate-related research. This study aims to estimate RZSM across China by using a one-parameter (T) exponential filter method (EF method) together with a random forest (RF) regionalization approach and by using a large dataset containing in situ observations collected at 2121 sites across China. First, at each site, T is optimized at each of four soil layers (10-20 cm, 20-30 cm, 30-40 cm and 40-50 cm) by using 0-10-cm soil layer observations and the corresponding calibration layers. Second, an RF classifier is built for each layer according to the calibrated T values and 14 soil, climate and vegetation parameters across 2121 sites. Third, the calibrated T at each soil layer is regionalized with an established RF classifier. Spatial T maps are given for each soil layer across China. Our results show that the EF method performs reasonably well in predicting RZSM at the 10-20-cm, 20-30-cm, 30-40-cm and 40-50-cm layers, with Nash-Sutcliffe efficiency (NSE) medians of 0.73, 0.52, 0.38 and 0.27, respectively, between the observations and estimations. The T parameter shows a spatial pattern in each soil layer and is largely controlled by climate regimes. This study offers an improved RZSM estimation method using a large dataset containing in situ observations; the proposed method also has the potential to be used in other parts of the world.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.157425 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!