Salt marsh fragmentation in a mesotidal estuary: Implications for medium to long-term management.

Sci Total Environ

Department of Estuarine and Delta systems, NIOZ Royal Netherlands Institute for Sea Research, 140, 4400 AC Yerseke, the Netherlands; Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 217, 7500 AE Enschede, the Netherlands.

Published: November 2022

During the last decades many salt marshes worldwide have suffered important losses in their extent and associated ecosystem services. The salt marshes of San Vicente de la Barquera estuary (N Spain) are a clear example of this, with a drastic reduction in vegetation surface over the last 60 years. This paper provides insights into the main factors controlling salt marsh functioning in sheltered estuarine areas. Regional and local factors have been disaggregated to identify the main drivers controlling the functioning of the salt marsh to develop appropriate management measures according to the evolution of the system. These factors have been studied in their spatial context through detailed maps of change in vegetation cover combined with topographic data obtained from UAV and RTK-DGPS surveys. The results demonstrate that in this estuary the salt marsh area is declining following a fragmentation process. No clear pattern of vegetation loss/gain with elevation has been identified. However, the results point to increased hydrodynamic stress in the area, with stronger currents inside the estuary. This is probably the major factor responsible for the decline of the salt marshes in the San Vicente de la Barquera estuary. Furthermore, several human interventions during the 20th century (local drivers) have also probably contributed to a lower resilience against SLR (regional driver). This work demonstrates that both natural and human drivers of change need to be considered when characterizing the evolution of salt marshes, wherever efficient management strategies need to be designed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.157410DOI Listing

Publication Analysis

Top Keywords

salt marsh
16
salt marshes
16
salt
8
marshes san
8
san vicente
8
vicente barquera
8
barquera estuary
8
estuary
5
marsh fragmentation
4
fragmentation mesotidal
4

Similar Publications

Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.

View Article and Find Full Text PDF

Isotopic variability of the invasive blue crab Callinectes sapidus in the Gulf of Cadiz: Impacts and implications for coastal ecosystem management.

J Environ Manage

January 2025

Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui, 2, Puerto Real, Cadiz, 11510, Spain; Associate Research Unit "Blue Growth", Spanish National Research Council (CSIC) - Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Cadiz, Spain. Electronic address:

The variability in trophic position and carbon isotopic signatures can provide information about their dietary flexibility and its ability to adapt to changing environmental conditions. The impact of the invasive blue crab Callinectes sapidus was assessed by estimating its trophic position and isotopic niche using stable isotopes (δ³C, δ⁵N, δ³⁴S) across different invaded Atlantic coastal areas. This study, the first of its kind in the eastern Atlantic range, reveals the crab's omnivorous behavior with a wide trophic position (TP = 2-4), consistent with findings from its native range.

View Article and Find Full Text PDF

Coastal ecosystems play a major role in marine carbon budgets, but substantial uncertainties remain in the sources and fluxes of coastal carbon dioxide (CO). Here, we assess when, where, and how submarine groundwater discharge (SGD) releases CO to shallow coastal ecosystems. Time-series observations of dissolved CO and radon (Rn, a natural groundwater tracer) across 40 coastal systems from 14 countries revealed large SGD-derived CO fluxes.

View Article and Find Full Text PDF

Draft genome sequence of sp. SA01 isolated from seedlings collected in Cape Cod (USA).

Microbiol Resour Announc

January 2025

The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.

A draft genome was generated for a strain of closely related to sp. ENV421 isolated from plants of smooth cordgrass germinated from seeds collected in a salt marsh in Cape Cod (USA). Genomic DNA was sequenced using paired-end Illumina technologies.

View Article and Find Full Text PDF

Increased Mineral-Associated Organic Carbon and Persistent Molecules in Allochthonous Blue Carbon Ecosystems.

Glob Chang Biol

January 2025

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China.

Coastal wetlands contain very large carbon (C) stocks-termed as blue C-and their management has emerged as a promising nature-based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!