This study examines how microscale differences in skeletal ultrastructure affect the crystallographic and nanomechanical properties of two related bryozoan species: (i) Hornera currieae, which is found at relatively quiescent depths of c. 1000 m, and (ii) Hornera robusta, which lives at depths of 50-400 m where it is exposed to currents and storm waves. Microstructural and Electron Backscatter Diffraction (EBSD) observations show that in both species the secondary walls are composed of low-Mg calcite crystallites that grow with their c-axes perpendicular to the wall. Branches in H. currieae develop a strong preferred orientation of the calcite c-axes, while in H. robusta the c-axes are more scattered. Microstructural observations suggest that the degree of scattering is controlled by the underlying morphology of the skeletons: in H. currieae the laminated branch walls are smooth and relatively uninterrupted, whereas the wall architecture of H. robusta is modified by numerous deflections, forming pustules and ridges associated with microscopic tubules. Modelling of the Young's modulus and measurements of nanoindentation hardness indicate that the observed scattering of the crystallite c-axes affects the elastic modulus and nanohardness of the branches, and therefore controls the mechanical properties of the skeletal walls. At relatively high pressure in deep waters, the anisotropic skeletal architecture of H. currieae is aimed at concentrating elasticity normal to the skeleton wall. In comparison, in the relatively shallow and active hydrographic regime of the continental shelf, the elastically isotropic skeleton of H. robusta is designed to increase protection from external predators and stronger omni-directional currents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsb.2022.107882 | DOI Listing |
Am J Orthod Dentofacial Orthop
January 2025
Departments of Materials Science and Engineering and Bioengineering, University of Texas at Dallas, Richardson, Tex.
Introduction: This study aimed to identify the link between alloy microstructures and the nanomechanical properties of different orthodontic archwires containing nickel-titanium (NiTi) by sensing sliced areas. Previous studies have focused on analyzing and contrasting physical properties such as microhardness, elasticity modulus, and resistance; therefore, the trend is to consider microstructural characteristics in detail.
Methods: Thirty archwire samples from 3 different commercial brands, American Orthodontics (AO), 3M Unitek (3M), and Borgatta, were analyzed through scanning electron microscopy and energy-dispersive x-ray spectroscopy, transmission electron microscopy, atomic force microscopy, Berkovich nanoindentation, and microtensile microscopy to determine their chemical-crystallographic characteristics and nanomechanical and bending characteristics.
Micromachines (Basel)
September 2023
Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan.
In this study, samarium (Sm-10at%)-doped BiFeO (SmBFO) thin films were grown on platinum-coated glass substrates using pulsed laser deposition (PLD) to unveil the correlation between the microstructures and nanomechanical properties of the films. The PLD-derived SmBFO thin films were prepared under various oxygen partial pressures () of 10, 30, and 50 mTorr at a substrate temperature of 600 °C. The scanning electron microscopy analyses revealed a surface morphology consisting of densely packed grains, although the size distribution varied with the .
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
November 2023
Department of Metallurgy and Structural Integrity, National Nanotechnology Laboratory Centro de Investigación en Materiales Avanzados S.C, Chihuahua, Chihuahua, Mexico. Electronic address:
This article focuses on a description of research performed to identify structural and mechanical properties differences between calculi in stones, such as gallstones, kidney stones, dental tartar, and saliva gland sialolite, were analyzed and compared with tap water stone, in order to set interrelations. In this study, biological hard pebble-like structures were analyzed and compared among them using Scanning Electron Microscopy (SEM), X-Ray diffraction (XRD), and Atomic Force Microscopy (AFM). In addition, Nanoindentation was used to obtain values as example in kidney stones the in; stiffness S = 27,827 ± 620 N/nm elastic modulus E = 27.
View Article and Find Full Text PDFJ Dent
March 2023
Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain.
Objectives: Bioactive materials have been used for functionalization of adhesives to promote dentin remineralization. This study aims to evaluate bonding ability and both mechanical and chemical behavior of demineralized dentin infiltrated with polymeric nanoparticles doped with dexamethasone (Dex-NPs).
Methods: Dentin conditioned surfaces were infiltrated with NPs, Dex-NPs or Dex-Zn-NPs.
Micromachines (Basel)
November 2022
Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan.
The influence of the substrate temperature on the structural, surface morphological, optical and nanomechanical properties of NiO films deposited on glass substrates using radio-frequency magnetron sputtering was examined by X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Visible spectroscopy and nanoindentation, respectively. The results indicate that the substrate temperature exhibits significant influences on both the grain texturing orientation and surface morphology of the films. Namely, the dominant crystallographic orientation of the films switches from (111) to (200) accompanied by progressively roughening of the surface when the substrate temperature is increased from 300 °C to 500 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!