The coronavirus (COVID-19) is becoming more threatening with the emergence of new mutations. New virus transmission and infection processes remain challenging and re-examinations of proper protection methods are urgently needed. From fluid dynamic viewpoint, the transmission of virus-carrying droplets and aerosols is one key to understanding the virus-transmission mechanisms. This study shows virus transmission by incorporating flow-evaporation model into the Navier-Stokes equation to describe the group of airborne sputum droplets exhaled under Rosin-Rammler distribution. Solid components and humidity field evolution are incorporated in describing droplet and ambient conditions. The numerical model is solved by an inhouse code using advection-diffusion equation for the temperature field and the humidity field, discretized by applying the total-variation diminishing Runge-Kutta method. The results of this study are presented in detail to show the different trends under various ambient conditions and to reveal the major viral-transmission routes as a function of droplet size.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283082 | PMC |
http://dx.doi.org/10.1016/j.chemosphere.2022.135708 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!