The high fidelity of replication of the nuclear DNA genome in eukaryotes involves three processes. Correct rather than incorrect dNTPs are almost always incorporated by the three major replicases, DNA polymerases α, δ and ε. When an incorrect base is occasionally inserted, the latter Pols δ and ε also have a 3 ´ to 5 ´ exonuclease activity that can remove the mismatch to allow correct DNA synthesis to proceed. Lastly, rare mismatches that escape proofreading activity and are present in newly replicated DNA can be removed by DNA mismatch repair. In this review, we consider evidence supporting the hypothesis that the second mechanism, proofreading, can operate in two different ways. Primer terminal mismatches made by either Pol δ or Pol ε can be 'intrinsically' proofread. This mechanism occurs by direct transfer of a misinserted base made at the polymerase active site to the exonuclease active site that is located a short distance away. Intrinsic proofreading allows mismatch excision without intervening enzyme dissociation. Alternatively, considerable evidence suggests that mismatches made by any of the three replicases can also be proofread by 'extrinsic' proofreading by Pol δ. Extrinsic proofreading occurs when a mismatch made by any of the three replicases is initially abandoned, thereby allowing the exonuclease active site of Pol δ to bind directly to and remove the mismatch before replication continues. Here we review the evidence that extrinsic proofreading significantly enhances the fidelity of nuclear DNA replication, and we then briefly consider the implications of this process for evolution and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561950 | PMC |
http://dx.doi.org/10.1016/j.dnarep.2022.103369 | DOI Listing |
Hum Reprod
December 2024
Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
This Directions article examines the mechanisms by which a father's age impacts the health and wellbeing of his children. Such impacts are significant and include adverse birth outcomes, dominant genetic conditions, neuropsychiatric disorders, and a variety of congenital developmental defects. As well as age, a wide variety of environmental and lifestyle factors are also known to impact offspring health via changes mediated by the male germ line.
View Article and Find Full Text PDFDNA Repair (Amst)
November 2024
Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA. Electronic address:
We show that the rates of single base substitutions, additions, and deletions across the nuclear genome are strongly increased in a strain harboring a mutator variant of DNA polymerase α combined with a mutation that inactivates the 3´-5´ exonuclease activity of DNA polymerase δ. Moreover, tetrad dissections attempting to produce a haploid triple mutant lacking Msh6, which is essential for DNA mismatch repair (MMR) of base•base mismatches made during replication, result in tiny colonies that grow very slowly and appear to be aneuploid and/or defective in oxidative metabolism. These observations are consistent with the hypothesis that during initiation of nuclear DNA replication, single-base mismatches made by naturally exonuclease-deficient DNA polymerase α are extrinsically proofread by DNA polymerase δ, such that in the absence of this proofreading, the mutation rate is strongly elevated.
View Article and Find Full Text PDFSci Rep
September 2022
Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
The twin-arginine translocation (Tat) pathway involves an inbuilt quality control (QC) system that synchronizes the proofreading of substrate protein folding with lipid bilayer transport. However, the molecular details of this QC mechanism remain poorly understood. Here, we hypothesized that the conformational state of Tat substrates is directly sensed by the TatB component of the bacterial Tat translocase.
View Article and Find Full Text PDFDNA Repair (Amst)
September 2022
Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA. Electronic address:
Nat Struct Mol Biol
December 2021
Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, Durham, NC, USA.
Accurate DNA replication of an undamaged template depends on polymerase selectivity for matched nucleotides, exonucleolytic proofreading of mismatches, and removal of remaining mismatches via DNA mismatch repair (MMR). DNA polymerases (Pols) δ and ε have 3'-5' exonucleases into which mismatches are partitioned for excision in cis (intrinsic proofreading). Here we provide strong evidence that Pol δ can extrinsically proofread mismatches made by itself and those made by Pol ε, independently of both Pol δ's polymerization activity and MMR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!