Modulation of the lipophilicity and molecular size of thiosemicarbazone inhibitors to regulate tyrosinase activity.

Spectrochim Acta A Mol Biomol Spectrosc

Industrial Technology Research Academy, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China; School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Jianjun East Rd. 211, Yancheng 224051, PR China. Electronic address:

Published: November 2022

A group of 5-methylsalicylaldehyde thiosemicarbazone derivatives (HMTs) bearing different lipophilic and steric substituents attached at the 3-position of cresol ring were synthesized and investigated as mushroom tyrosinase (TYR) inhibitors. The ability of HMTs to inhibit the diphenolase activity of TYR was evaluated with L-DOPA as substrate by determining IC values in relation to their structure modifications. HMTs displayed distinct inhibitory competencies towards TYR activity with IC values in the range of 1.02-143.56 μM. A close correlation between their inhibition potency and both lipophilicity and molecular size was observed. The inhibitory effect of the hydroxyethyl-containing derivatives was much higher than the hydroxyethyl-free ones overall. Among them, HMT-NBO exhibited the most potent effect with IC of 5.85 μM, which was nearly 25-fold and 3.8-fold lower than its parent HMT-NBE and the control kojic acid, respectively. The hydroxyethyl clearly benefited the improvement of the inhibitory competences and acted as a regulating group of lipophilicity of the inhibitors. The kinetic analyses showed that HMTs were reversible and mixed type inhibitors against mushroom TYR. The inhibition mechanism was studied by means of fluorescence spectroscopy, FT-IR, ESI-MS and molecular docking analysis. The results indicated that the observed inhibitory effect of HMTs was accomplished by acting on the amino acid residues rather than by chelating the centre copper ions of TYR. Each of HMTs can insert the hydrophobic pocket and interact with the residues of TYR through Van der Waals forces and hydrogen bonds, with additional electrostatic interactions for HMT-NEE and HMT-NEO further strengthening the affinity. Meanwhile, the inhibitors were observed to bind with L-DOPA or/and L-DOPAquinone forming 1:1 stoichiometric complexes, probably exerting indirect inhibition against TYR activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121590DOI Listing

Publication Analysis

Top Keywords

lipophilicity molecular
8
molecular size
8
tyr activity
8
observed inhibitory
8
tyr
7
hmts
6
inhibitors
5
modulation lipophilicity
4
size thiosemicarbazone
4
thiosemicarbazone inhibitors
4

Similar Publications

The COVID-19 pandemic caused by SARS-CoV-2 continues to pose a major challenge to global health. Targeting the main protease of the virus (Mpro), which is essential for viral replication and transcription, offers a promising approach for therapeutic intervention. In this study, advanced computational techniques such as molecular docking and molecular dynamics simulations were used to screen a series of antiviral compounds for their potential inhibitory effect on the SARS-CoV-2 Mpro.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia, marked by progressive brain degeneration and cognitive decline. A major pathological feature of AD is the accumulation of hyperphosphorylated tau (p-tau) in the form of neurofibrillary tangles (NFTs), which leads to neuronal death and neurodegeneration. P-tau also induces endoplasmic reticulum (ER) stress and activates the unfolded protein response, causing inflammation and apoptosis.

View Article and Find Full Text PDF

Regulatory effects of resveratrol on nitric oxide signaling in cardiovascular diseases.

Pharmacol Rep

January 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells.

View Article and Find Full Text PDF

Mapping Dynamic Protein Clustering with AIEgen-Active Chemigenetic Probe.

Angew Chem Int Ed Engl

January 2025

East China University of Science and Technology, Insitute of Fine Chemicals, Meilong Road 130, Shanghai, China, 200237, Shanghai, CHINA.

Protein clustering/disassembling is a fundamental process in biomolecular condensates, playing crucial roles in cell fate decision and cellular homeostasis. However, the inherent features of protein clustering, especially for its reversible behavior and subtle microenvironment variation, present significant hurdles in probe chemistry for tracking protein clustering dynamics. Herein, we report a bilateral-tailored chemigenetic probe, in which an "amphiphilic" AIEgen QMSO3Cl is covalently conjugated to a protein tag that is genetically fused to protein-of-interest (POI).

View Article and Find Full Text PDF

Lipophilic molecular rotor to assess the viscosity of oil core in nano-emulsion droplets.

Soft Matter

January 2025

INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France.

Characterization of nanoscale formulations is a continuous challenge. Size, morphology and surface properties are the most common characterizations. However, physicochemical properties inside the nanoparticles, like viscosity, cannot be directly measured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!