Objective: This study aimed to clarify the antibacterial mechanism and antibiofilm effect of soybean-derived peptide BCBS-11 against periodontopathic bacteria.
Design: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of BCBS-11 against Porphyromonas gingivalis (P. gingivalis), Fusobacterium nucleatum (F. nucleatum), and Streptococcus mitis (S. mitis) were determined for the antibacterial mechanism. The effect of BCBS-11 on membrane permeability and depolarization activity were investigated using propidium iodide (PI) staining and 3, 3'-dipropylthiadicarbocyanine iodide (DiSC-(5)) analysis. Monospecies and multispecies biofilms were cultured on 96-well plates. The amount of biofilm was determined using crystal violet staining to determine the inhibition of biofilm formation and the eradication of established biofilm using BCBS-11. The cytotoxicity of BCBS-11 was evaluated using 3-(4, 5-Dimethylthiazol-2-yl)- 2, 5-diphenyltetrazolium bromide (MTT) assay.
Results: The MIC and MBC indicated the bactericidal activity of BCBS-11 against P. gingivalis and F. nucleatum. The PI staining revealed that BCBS-11 disrupted the bacterial membrane integrity. The DiSC-(5) analysis indicated that BCBS-11 depolarized the bacterial cytoplasmic membrane. These results indicate the antimicrobial action of BCBS-11 through membrane disruption and the collapse of membrane electrochemical gradient. BCBS-11 significantly inhibited the monospecies biofilm formation of P. gingivalis and F. nucleatum and also inhibited dual-species biofilm. BCBS-11 was not cytotoxic toward human oral epithelial cells.
Conclusions: BCBS-11 inhibits the monospecies and multispecies biofilm formation of P. gingivalis and F. nucleatum, and their bactericidal activity results from membrane disruption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.archoralbio.2022.105497 | DOI Listing |
β-Lactams are the most widely used antibiotics for the treatment of bacterial infections because of their proven track record of safety and efficacy. However, susceptibility to β-lactam antibiotics is continually eroded by resistance mechanisms. Emerging multidrug-resistant (MDR) strains possessing altered alleles (encoding PBP2) pose a global health emergency as they threaten the utility of ceftriaxone, the last remaining outpatient antibiotic.
View Article and Find Full Text PDFPyrazinamide (PZA) is a critical component of tuberculosis first-line therapy due to its ability to kill both growing and non-replicating drug-tolerant populations of within the host. Recent evidence indicates that PZA acts through disruption of coenzyme A synthesis under conditions that promote cellular stress. In contrast to its bactericidal action , PZA shows weak bacteriostatic activity against in axenic culture.
View Article and Find Full Text PDFBMC Biotechnol
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
Background: Successful treatment of pathogenic bacteria like Enterobacter Cloacae with bacteriophage (phage) counteract some hindrance such as phage stability and immunological clearance. Our research is focused on the encapsulation of phage HK6 within chitosan nanoparticles.
Result: Encapsulation significantly improves stability, efficacy, and delivery of phages.
BMC Microbiol
January 2025
Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, Egypt.
Background: Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers.
Methods: This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities.
Sci Rep
January 2025
Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo, 12622, Egypt.
Food commodities, including mycotoxins naturally produced from toxigenic fungi (pre- or post-harvest), are particularly vulnerable to contamination. The study intended to use unique bioactive composites loaded with antimicrobial constituents for food packaging. Three composite types are based on carboxymethyl cellulose/shellac (CMC/SH) and loaded with pomegranate extract (POE) with or without jojoba oil (JOE) at various concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!