The automation of liquid-handling routines offers great potential for fast, reproducible, and labor-reduced biomaterial fabrication but also requires the development of special protocols. Competitive systems demand for a high degree in miniaturization and parallelization while maintaining flexibility regarding the experimental design. Today, there are only a few possibilities for automated fabrication of biomaterials inside multiwell plates. We have previously demonstrated that streptavidin-based biomimetic platforms can be employed to study cellular behaviors on biomimetic surfaces. So far, these self-assembled materials were made by stepwise assembly of the components using manual pipetting. In this work, we introduce for the first time a fully automated and adaptable workflow to functionalize glass-bottom multiwell plates with customized biomimetic platforms deposited in single wells using a liquid-handling robot. We then characterize the cell response using automated image acquisition and subsequent analysis. Furthermore, the molecular surface density of the biomimetic platforms was characterized using fluorescence-based image correlation spectroscopy. These measurements were in agreement with standard spectroscopic ellipsometry measurements. Due to automation, we could do a proof of concept to study the effect of heparan sulfate on the bioactivity of bone morphogenetic proteins on myoblast cells, using four different bone morphogenetic proteins (BMPs) (2, 4, 6, and 7) in parallel, at five increasing concentrations. Using such an automated self-assembly of biomimetic materials, it may be envisioned to further investigate the role of a large variety of extracellular matrix (ECM) components and growth factors on cell signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614070PMC
http://dx.doi.org/10.1021/acsami.2c08272DOI Listing

Publication Analysis

Top Keywords

biomimetic platforms
12
automated fabrication
8
self-assembled materials
8
growth factors
8
multiwell plates
8
bone morphogenetic
8
morphogenetic proteins
8
automated
5
biomimetic
5
fabrication streptavidin-based
4

Similar Publications

Organs-on-chips (OoCs) or microphysiological platforms are biomimetic systems engineered to emulate organ structures on microfluidic devices for biomedical research. These microdevices can mimic biological environments that enable cell-cell interactions on a small scale by mimicking 3D in vivo microenvironments outside the body. Thus far, numerous single and multiple OoCs that mimic organs have been developed, and they have emerged as forerunners for drug efficacy and cytotoxicity testing.

View Article and Find Full Text PDF

Tumor microenvironment-mimicking macrophage nanovesicles as a targeted therapy platform for colorectal cancer.

Int J Pharm

January 2025

General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, 35128 Padua, Italy; NanoInspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.

Macrophages are a pivotal immune cell population in the tumor microenvironment of colorectal cancer (CRC). Differently-polarized macrophages could be exploited to yield naturally-tailored biomimetic nanoparticles for CRC targeting. Here, membrane proteins were isolated from the THP-1 cell line, and anti-tumor macrophages (M1) were obtained from differentiation of THP-1.

View Article and Find Full Text PDF

Biomimetic Topological Micropattern Arrays Regulate the Heterogeneity of Cellular Fates in Lung Fibroblasts between Fibrosis and Invasion.

ACS Nano

January 2025

Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

Article Synopsis
  • Idiopathic pulmonary fibrosis (IPF) involves persistent lung tissue injury and abnormal healing, with key roles played by myofibroblasts transitioning from fibroblasts and depositing extracellular matrix (ECM).
  • Research using engineered ECM micropatterns revealed that isotropic fibroblasts exhibited invasive characteristics and high expression of specific markers, while anisotropic fibroblasts adopted a more normal remodeling phenotype.
  • The study highlights how cellular topology affects fibroblast behavior and interactions with the ECM, which could contribute to worsening fibrosis and potentially create an environment that promotes cancer development.
View Article and Find Full Text PDF

Concurrent Pressure-Induced Superconductivity and Photoconductivity Transitions in PbSeTe.

Adv Mater

December 2024

Academy for Advanced Interdisciplinary Studies and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.

Concurrent superconductivity and negative photoconductivity (NPC) are rarely observed. Here, the discovery in PbSeTe of superconductivity and photoconductivity transitions between positive photoconductivity (PPC) and NPC during compression is reported to ≈40 GPa and subsequent decompression, which are also accompanied by reversible structure transitions (3D Fm m ⇌ 2D Pnma ⇌ 3D Pm m). Superconductivity with a maximum T of ≈6.

View Article and Find Full Text PDF

An antibody-free bio-layer interferometry biosensor for immunoglobulin G1 detection in human serum by using molecularly imprinted polynorepinephrine.

Biosens Bioelectron

March 2025

Department of Chemistry "Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Italy. Electronic address:

Bio-Layer Interferometry (BLI) has emerged as a versatile technique in affinity-based biosensing, analogous to Surface Plasmon Resonance. BLI enables real-time, label-free detection, and quantification of biomolecular interactions between an immobilized receptor and an analyte in solution. The BLI sensor comprises an optical fiber with an internal reference layer at the end and an external biocompatible layer where biological receptors are immobilized and exposed to the solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!