Antibiotic resistance is an important public health problem. One potential solution is the development of synergistic antibiotic combinations, in which the combination is more effective than the component drugs. However, experimental progress in this direction is severely limited by the number of samples required to exhaustively test for synergy, which grows exponentially with the number of drugs combined. We introduce a new metric for antibiotic synergy, motivated by the popular Fractional Inhibitory Concentration Index and the Highest Single Agent model. We also propose a new experimental design that samples along all appropriately normalized diagonals in concentration space, and prove that this design identifies all synergies among a set of drugs while only sampling a small fraction of the possible combinations. We applied our method to screen two- through eight-way combinations of eight antibiotics at 10 concentrations each, which requires sampling only 2,560 unique combinations of antibiotic concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9333450 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1010311 | DOI Listing |
Acta Biomater
January 2025
School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, P. R. China. Electronic address:
Oral mucosal wounds are more prone to inflammation due to direct exposure to various microorganisms. This can result in pain, delayed healing, and other complications, affecting patients' daily activities such as eating and speaking. Consequently, the overall quality of life for patients is significantly reduced.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Dipartimento Sanità Pubblica, AUSL Imola, Viale Amendola 8, 40026 Imola, Italy.
Intratumoral microbiota, the diverse community of microorganisms residing within tumor tissues, represent an emerging and intriguing field in cancer biology. These microbial populations are distinct from the well-studied gut microbiota, offering novel insights into tumor biology, cancer progression, and potential therapeutic interventions. Recent studies have explored the use of certain antibiotics to modulate intratumoral microbiota and enhance the efficacy of cancer therapies, showing promising results.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
A phage-antibiotic synergy could be an alternative in urinary tract infection (UTI) therapy, as it leads to the elimination of bacteria and to the reduction in variants resistant to phages and antibiotics. The aims of the in vitro study were to determine whether phages vB_Efa29212_2e and vB_Efa29212_3e interact synergistically with selected antibiotics in the treatment of infections, to optimize antibiotic concentrations and phage titers for the most effective combinations, and to assess their impact on the number of spontaneous resistant variants and on the phages' reproductive cycles. The modified double-layer disc diffusion method, checkboard, time-kill assays, one-step growth method and the double agar overlay plaque assay were implemented.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland.
Fruits are excellent sources of substrate for various fermented products, including fruit vinegars, which are typically produced by submerged fermentation. Some evidence suggests that fruit vinegar consumption can alleviate certain disorders, including hyperlipidemia, inflammation, and hyperglycemia. Fruit vinegars also have bacteriostatic and antihypertensive actions.
View Article and Find Full Text PDFMolecules
December 2024
School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
Multidrug-resistant (MDR) bacteria are becoming more and more common, which presents a serious threat to world health and could eventually render many of the antibiotics we currently use useless. The research and development of innovative antimicrobial tactics that can defeat these hardy infections are imperative in light of this predicament. Antimicrobial peptides (AMPs), which have attracted a lot of attention due to their distinct modes of action and capacity to elude conventional resistance mechanisms, are among the most promising of these tactics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!