This paper proposes a one-step maskless 2D nanopatterning approach named self-aligned plasmonic lithography (SPL) by line-shaped ultrafast laser ablation under atmospheric conditions for the first time. Through a theoretical calculation of electric field and experimental verification, we proved that homogeneous interference of laser-excited surface plasmon polaritons (SPPs) can be achieved and used to generate long-range ordered 2D nanostructures in a self-aligned way over a wafer-sized area within several minutes. Moreover, the self-aligned nanostructures can be freely transferred between embossed nanopillars and engraved nanoholes by modulating the excitation intensity of SPPs interference through altering the incident laser energy. The SPL technique exhibits further controllability in the shape, orientation, and period of achievable nanopatterns on a wide range of semiconductors and metals by tuning processing parameters. Nanopatterned films can further act as masks to transfer structures into other bulk materials, as demonstrated in silica.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.2c01740DOI Listing

Publication Analysis

Top Keywords

self-aligned plasmonic
8
plasmonic lithography
8
long-range ordered
8
ordered nanostructures
8
self-aligned
4
lithography maskless
4
maskless fabrication
4
fabrication large-area
4
large-area long-range
4
nanostructures paper
4

Similar Publications

Quantum mechanics is applied to create numerous electronic devices, including lasers, electron microscopes, magnetic resonance imaging, and quantum information technology. However, the practical realization of cavity quantum electrodynamics (QED) in various applications is limited due to the demanding conditions required for achieving strong coupling between an optical cavity and excitonic matter. Here, we present biological cavity QED with self-aligned nanoring doublets: QED-SANDs, which exhibit robust room-temperature strong coupling with a biomolecular emitter, chlorophyll-.

View Article and Find Full Text PDF

Metasurfaces, composed by metals and dielectrics in periodical order with subwavelength pitches, are of great importance for their unique ability to abruptly manipulate optical fields. So far, all the reported metasurfaces are constructed by thermally deposited metals and dielectric films, based on semiconductor processes which are expensive and time-consuming. Inspired by the outstanding dry etch property of spin-on-carbon (SOC) as the interlayer material in CMOS technology, this paper proposes to utilize the SOC as the dielectric layer in a chessboard metasurface with dual layer of gold to form an array of local surface plasmonic resonators (localized surface plasmon resonance).

View Article and Find Full Text PDF

Exclusive Core-Janus Satellite Assembly Based on Au-Ag Janus Self-Aligned Distributions with Abundant Hotspots for Ultrasensitive Detection of CA19-9.

ACS Sens

February 2024

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

The development of surface-enhanced Raman scattering (SERS) probes with high sensitivity and stability is imminent to improve the accuracy of cancer diagnosis. Here, an exclusive core-Janus satellite (CJS) assembly was constructed by a hierarchical assembly strategy in which the Au-Ag Janus satellite is vertically self-aligned on the core surface. In the process, a silica shell template was ingeniously employed to asymmetrically mask the presatellites for the in situ formation of the Janus structure, and a series of Janus satellites with different morphologies were developed by regulating the encapsulated area of the presatellites.

View Article and Find Full Text PDF

Polarization-directed growth of spiral nanostructures by laser direct writing with vector beams.

Nat Commun

March 2023

Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.

Chirality is pivotal in nature which attracts wide research interests from all disciplines and creating chiral matter is one of the central themes for chemists and material scientists. Despite of significant efforts, a simple, cost-effective and general method that can produce different kinds of chiral metamaterials with high regularity and tailorability is still demanding but greatly missing. Here, we introduce polarization-directed growth of spiral nanostructures via vector beams, which is simple, tailorable and generally applicable to both plasmonic and dielectric materials.

View Article and Find Full Text PDF

This paper proposes a one-step maskless 2D nanopatterning approach named self-aligned plasmonic lithography (SPL) by line-shaped ultrafast laser ablation under atmospheric conditions for the first time. Through a theoretical calculation of electric field and experimental verification, we proved that homogeneous interference of laser-excited surface plasmon polaritons (SPPs) can be achieved and used to generate long-range ordered 2D nanostructures in a self-aligned way over a wafer-sized area within several minutes. Moreover, the self-aligned nanostructures can be freely transferred between embossed nanopillars and engraved nanoholes by modulating the excitation intensity of SPPs interference through altering the incident laser energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!