The whole world is still challenged with COVID-19 pandemic caused by Coronavirus-2 (SARS-CoV-2) which has affected millions of individuals around the globe. Although there are prophylactic vaccines being used, till now, there is ongoing research into discovery of drug candidates for total eradication of all types of coronaviruses. In this context, this study sought to investigate the inhibitory effects of six selected tropical plants against four pathogenic proteins of Coronavirus-2. The medicinal plants used in this study were selected based on their traditional applications in herbal medicine to treat COVID-19 and related symptoms. The biological activities (antioxidant, free radical scavenging, and anti-inflammatory activities) of the extracts of the plants were assessed using different standard procedures. The phytochemicals present in the extracts were identified using GCMS and further screened via in silico molecular docking. The data from this study demonstrated that the phytochemicals of the selected tropical medicinal plants displayed substantial binding affinity to the binding pockets of the four main pathogenic proteins of Coronavirus-2 indicating them as putative inhibitors of Coronavirus-2 and as potential anti-coronavirus drug candidates. The reaction between these phytocompounds and proteins of Coronavirus-2 could alter the pathophysiology of COVID-19, thus mitigating its pathogenic reactions/activities. In conclusion, phytocompounds of these plants exhibited promising binding efficiency with target proteins of SARS-COV-2. Nevertheless, in vitro and in vivo studies are important to potentiate these findings. Other drug techniques or models are vital to elucidate their compatibility and usage as adjuvants in vaccine development against the highly contagious COVID-19 infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9289936 | PMC |
http://dx.doi.org/10.1007/s11356-022-22025-9 | DOI Listing |
Therapie
January 2025
Centre régional de pharmacovigilance, hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne cedex, France.
Aim: During coronavirus disease 2019 (COVID-19), the incidence rate of adverse drug reactions (ADRs) in hospitalized patients seemed higher than before the pandemic. Severe inflammation triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was cited as an explanation. We aimed to determine whether COVID-19 infection was associated with a higher risk of ADRs compared to other infectious diseases.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Special Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, and People's Hospital of Henan University, Zhengzhou, China.
Introduction: The long-term immunogenicity, adverse effects, influencing factors, and protection from booster vaccines remain unclear. Specifically, little is known regarding the humoral immunity and breakthrough infections associated with COVID-19 booster immunization. Therefore, we evaluated the immunogenicity, reactogenicity, influencing factors, and protective effects of the first coronavirus disease booster vaccine 23 months before and after implementation of dynamic zero epidemic control measures among healthcare staff.
View Article and Find Full Text PDFFront Neurosci
January 2025
Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Alzheimer's Disease (AD) is the most prevalent type of dementia and is characterized by the presence of senile plaques and neurofibrillary tangles. There are various theories concerning the causes of AD, but the connection between viral and bacterial infections and their potential role in the pathogenesis of AD has become a fascinating area of research for the field. Various viruses such as (HSV-1), (EBV), Cytomegalovirus (CMV), influenza viruses, and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), as well as bacteria such as (CP), (HP), (), Spirochetes and eukaryotic unicellular parasites (e.
View Article and Find Full Text PDFJ Med Virol
January 2025
Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus responsible for coronavirus disease 2019 (COVID-19). While SARS-CoV-2 primarily targets the lungs and airways, it can also infect other organs, including the central nervous system (CNS). The aim of this study was to investigate whether the choroid plexus could serve as a potential entry site for SARS-CoV-2 into the brain.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Bahir Dar University, P.O.Box 79, Bahir Dar, Ethiopia.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed substantial challenges on our society due to the COVID-19 pandemic. This virus relies heavily on its surface glycoprotein (S-glycoprotein) to facilitate attachment, fusion, and entry into host cells. While the nucleoprotein (N) in the ribonucleoprotein core binds to the viral RNA genome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!