Purpose: Injectable connective tissue matrices (CTMs) may promote tendon healing, given their minimally invasive properties, structural and biochemical extracellular matrix components, and capacity to fill irregular spaces. The purpose of this study is to evaluate the effects of placental CTMs on the cellular activities of human tenocytes. Decellularization, the removal of cells, cell fragments, and DNA from CTMs, has been shown to reduce the host's inflammatory response. Therefore, the authors hypothesize that a decellularized CTM will provide a more cell-friendly matrix to support tenocyte functions.

Methods: Three human placental CTMs were selected for comparison: AmnioFill® (A-CTM), a minimally manipulated, non-viable cellular particulate, BioRenew™ (B-CTM), a liquid matrix, and Interfyl® (I-CTM), a decellularized flowable particulate. Adhesion and proliferation were evaluated using cell viability assays and tenocyte migration using a transwell migration assay. Gene expression of tenocyte markers, cytokines, growth factors, and matrix metalloprotease (MMP) in tenocytes were assessed using quantitative polymerase chain reaction.

Results: Although A-CTM supported more tenocyte adhesion, I-CTM promoted significantly more tenocyte proliferation compared with A-CTM and B-CTM. Unlike A-CTM, tenocyte migration was higher in I-CTM than the control. The presence of I-CTM also prevented the loss of tenocyte phenotype, attenuated the expression of pro-inflammatory cytokines, growth factors, and MMP, and promoted the expression of antifibrotic growth factor, TGFβ3.

Conclusion: Compared with A-CTM and B-CTM, I-CTM interacted more favorably with human tenocytes in vitro. I-CTM supported tenocyte proliferation with reduced de-differentiation and attenuation of the inflammatory response, suggesting that I-CTM may support tendon healing and regeneration in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294091PMC
http://dx.doi.org/10.1186/s40634-022-00509-4DOI Listing

Publication Analysis

Top Keywords

human tenocytes
12
decellularized flowable
8
connective tissue
8
tenocytes vitro
8
tendon healing
8
placental ctms
8
inflammatory response
8
tenocyte
8
tenocyte migration
8
cytokines growth
8

Similar Publications

Exercise influences clinical Achilles tendon health in humans, but animal models of exercise-related Achilles tendon changes are lacking. Moreover, previous investigations of the effects of treadmill running exercise on rat Achilles tendon demonstrate variable outcomes. Our objective was to assess the functional, structural, cellular, and biomechanical impacts of treadmill running exercise on rat Achilles tendon with sensitive in and ex vivo approaches.

View Article and Find Full Text PDF

iTRAQ-Based Proteomic Analysis of Spontaneous Achilles Tendon Rupture.

J Proteome Res

January 2025

Department of Osteopathy and Orthopedics (Ankle) Surgery, The Sixth Teaching Hospital of Xinjiang Medical University, No. 39 Wuxing South Road, Urumqi 830001, Xinjiang Uygur Autonomous Region, China.

Article Synopsis
  • Spontaneous Achilles tendon rupture (SATR) mainly affects older adults with chronic injuries, but its cause and treatment options are still unclear.
  • A study used iTRAQ proteomics to identify 2432 proteins in SATR patients, highlighting 307 differentially expressed proteins linked to key biological pathways, including those related to COVID-19 and extracellular matrix organization.
  • Important proteins such as fibronectin and collagen types were found to be significantly affected in SATR tissues, indicating potential targets for improving diagnosis and treatment strategies.
View Article and Find Full Text PDF

Tendon Cell Biology: Effect of Mechanical Loading.

Cell Physiol Biochem

November 2024

Medical University of Lublin, Department of Sports Medicine, Lublin, Poland.

Tendons play a crucial role in the musculoskeletal system, connecting muscles to bones and enabling efficient force transfer. However, they are prone to acute and chronic injuries, which, if not properly repaired, can significantly impair function. Tendinopathy, a prevalent condition affecting approximately 20% of musculoskeletal complaints, arises from an imbalance between micro-injury accumulation and repair processes.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how synovial fluid from the shoulder affects umbilical cord-derived mesenchymal stem cells (SF-UC-MSCs) and their potential role in treating tendinopathy.
  • Specifically, it looks at the impact of these stem cells on tenocytes (cells in tendons) from patients with degenerative rotator cuff tears under inflammatory conditions induced by interleukin-1β (IL-1β).
  • Results show that SF-UC-MSCs conditioned media reduces inflammation in tenocytes while promoting the expression of protective growth factors, suggesting a promising therapeutic avenue for tendon injuries.
View Article and Find Full Text PDF

Background: Tendinopathy is a chronic tendon disease. Mesenchymal stem cells (MSCs), known for their anti-inflammatory properties, may lose effectiveness with extensive culturing. Previous research introduced "small umbilical cord-derived fast proliferating cells" (smumf cells), isolated using a novel minimal cube explant method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!