Purpose: Injectable connective tissue matrices (CTMs) may promote tendon healing, given their minimally invasive properties, structural and biochemical extracellular matrix components, and capacity to fill irregular spaces. The purpose of this study is to evaluate the effects of placental CTMs on the cellular activities of human tenocytes. Decellularization, the removal of cells, cell fragments, and DNA from CTMs, has been shown to reduce the host's inflammatory response. Therefore, the authors hypothesize that a decellularized CTM will provide a more cell-friendly matrix to support tenocyte functions.
Methods: Three human placental CTMs were selected for comparison: AmnioFill® (A-CTM), a minimally manipulated, non-viable cellular particulate, BioRenew™ (B-CTM), a liquid matrix, and Interfyl® (I-CTM), a decellularized flowable particulate. Adhesion and proliferation were evaluated using cell viability assays and tenocyte migration using a transwell migration assay. Gene expression of tenocyte markers, cytokines, growth factors, and matrix metalloprotease (MMP) in tenocytes were assessed using quantitative polymerase chain reaction.
Results: Although A-CTM supported more tenocyte adhesion, I-CTM promoted significantly more tenocyte proliferation compared with A-CTM and B-CTM. Unlike A-CTM, tenocyte migration was higher in I-CTM than the control. The presence of I-CTM also prevented the loss of tenocyte phenotype, attenuated the expression of pro-inflammatory cytokines, growth factors, and MMP, and promoted the expression of antifibrotic growth factor, TGFβ3.
Conclusion: Compared with A-CTM and B-CTM, I-CTM interacted more favorably with human tenocytes in vitro. I-CTM supported tenocyte proliferation with reduced de-differentiation and attenuation of the inflammatory response, suggesting that I-CTM may support tendon healing and regeneration in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294091 | PMC |
http://dx.doi.org/10.1186/s40634-022-00509-4 | DOI Listing |
J Orthop Res
December 2024
McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Exercise influences clinical Achilles tendon health in humans, but animal models of exercise-related Achilles tendon changes are lacking. Moreover, previous investigations of the effects of treadmill running exercise on rat Achilles tendon demonstrate variable outcomes. Our objective was to assess the functional, structural, cellular, and biomechanical impacts of treadmill running exercise on rat Achilles tendon with sensitive in and ex vivo approaches.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Osteopathy and Orthopedics (Ankle) Surgery, The Sixth Teaching Hospital of Xinjiang Medical University, No. 39 Wuxing South Road, Urumqi 830001, Xinjiang Uygur Autonomous Region, China.
Cell Physiol Biochem
November 2024
Medical University of Lublin, Department of Sports Medicine, Lublin, Poland.
Tendons play a crucial role in the musculoskeletal system, connecting muscles to bones and enabling efficient force transfer. However, they are prone to acute and chronic injuries, which, if not properly repaired, can significantly impair function. Tendinopathy, a prevalent condition affecting approximately 20% of musculoskeletal complaints, arises from an imbalance between micro-injury accumulation and repair processes.
View Article and Find Full Text PDFOrthop J Sports Med
November 2024
Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
Tissue Eng Regen Med
December 2024
Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Dongjak-Gu, Seoul, 07061, Korea.
Background: Tendinopathy is a chronic tendon disease. Mesenchymal stem cells (MSCs), known for their anti-inflammatory properties, may lose effectiveness with extensive culturing. Previous research introduced "small umbilical cord-derived fast proliferating cells" (smumf cells), isolated using a novel minimal cube explant method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!