Nature has beautifully assembled its light harvesting pigments within protein scaffolds, which ensures a very high energy transfer. Designing a highly efficient artificial bioinspired light harvesting system (LHS) thus requires the nanoscale spatial orientation and electronic control of the associated chromophores. Although DNA has been used as a scaffold to organize chromophores, proteins or polypeptides, however, are very rarely explored. Here, we have developed a highly efficient, artificial, bioinspired LHS using polypeptide (poly-d-lysine, PDL) nanostructures making use of their β-sheet structure in an aqueous alkaline medium. The chromophores used herein are compatible for an energy transfer process and are nonfluorescent in an aqueous medium but exhibit high fluorescence intensity when bound to the nanostructure of PDL. The close proximity of the chromophores results in an energy transfer efficiency of ∼92% besides generating white light emission at a particular molar ratio between the chromophores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.2c01309 | DOI Listing |
Small
January 2025
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
The photocatalytic conversion of CO into products such as CH and CH poses a significant challenge due to the lengthy reaction steps and the high energy barrier involved. In this study, both benzothiadiazole (BTD) and hydroxyl groups (-OH) are introduced into cobalt-based polymerized porphyrinic network (PPN) through a C-C coupling reaction. This modification of orbital energy levels that strengthens the ability of gain electrons and facilitates the charge transfer in PPN.
View Article and Find Full Text PDFACS Nano
January 2025
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Freestanding networked nanoparticle (NP) films hold substantial potential due to their high surface areas and customizable porosities. However, NPs with high surface energies and heterogeneous sizes or shapes present considerable challenges as they tend to aggregate, compromising their structural integrities. In this study, we report the scalable fabrication of ultrathin, bicontinuous, and densely packed carbon NP films via Pickering emulsion-mediated interfacial assembly.
View Article and Find Full Text PDFSmall
January 2025
XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Semiconductor photocatalysts embedded with rare earth upconversion nanoparticles (REUPs) are a promising strategy to improve their photoresponse range, but their photocatalytic performance within the near-infrared (NIR) region is far from satisfactory. Here, a method is reported to improve the photocatalytic activity by adjusting the nanocavity of upconversion nanoparticles inside a semiconductor. Two types of CdS embedded with NaYF:Yb,Er photocatalysts with core-shell structure (no cavity) (NYE/CdS) and yolk-shell structure (empty cavity) (NYE@CdS) are synthesized by different methods.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Chemistry Chinese Academy of Sciences, Institute of chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA.
Electrocatalytic nitrate reduction reaction (NO3RR) in alkaline electrolyte presents a sustainable pathway for energy storage and green ammonia (NH3) synthesis. However, it remains challenging to obtain high activity and selectivity due to the limited protonation and/or desorption processes of key intermediates. Herein, we propose a strategy to regulate the acid hardness nature of Cu catalyst by introducing appropriate modifier.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Guangdong University of Technology - University Town Campus: Guangdong University of Technology, Applied Chemistry, 100 Waihuan West Road, 510006, Guangzhou, CHINA.
Expanding the spectral response of photocatalysts to facilitate overall water splitting (OWS) represents an effective approach for improving solar spectrum utilization efficiency. However, the majority of single-phase photocatalysts designed for OWS primarily respond to the ultraviolet region, which accounts for a small proportion of sunlight. Herein, we present a versatile strategy to achieve broad visible-light-responsive OWS photocatalysis dominated by direct ligand-to-cluster charge transfer (LCCT) within metal-organic frameworks (MOFs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!