Continuous Flow Synthesis of 1,4-Benzothiazines Using Ambivalent Reactivity of ()-β-Chlorovinyl Ketones: A Point of Reaction Control Enabled by Flow Chemistry.

Org Lett

Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.

Published: July 2022

A continuous flow system to 1,4-benzothiazines was developed using the point of reaction control, where the ambivalent ()-β-chlorovinyl ketones and 2,2'-dithiodianilines were confined in a diffusion controlled flow setting. The successful segregation of reactive chemical species in a flow setting allowed more defined reaction pathways that are not feasible in traditional batch reaction conditions. The point of reaction control in flow systems helps to execute the reactions often plagued with the concurrent generation of multiple chemical species.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.2c01865DOI Listing

Publication Analysis

Top Keywords

point reaction
12
reaction control
12
continuous flow
8
-β-chlorovinyl ketones
8
flow setting
8
chemical species
8
reaction
5
flow
5
flow synthesis
4
synthesis 14-benzothiazines
4

Similar Publications

Solid polymer electrolytes (SPEs) with excellent ionic conductivity and a wide electrochemical stability window are critical for high-energy lithium metal batteries (LMBs). However, the widespread application of polymer electrolytes is severely limited by inadequate room-temperature ionic conductivity, sluggish interfacial charge transport, and uncontrolled reactions at the electrode/electrolyte interface. Herein, we present a uniform polymerized 1,3-dioxolane (PDOL) composite solid polymer electrolyte (PDOL-S/F-nano LiF CSE) that satisfies these requirements through the in situ catalytic polymerization effect of nano LiF on the polymerization of 1,3-dioxolane-based electrolytes.

View Article and Find Full Text PDF

Dithranol is one of the most effective topical medications for treating plaque psoriasis. However, its clinical use is limited by irritative adverse reactions to the skin, such as oedema, erythema, and pruritus, caused by poorly understood mechanisms. Because TRPV1 activation mediates skin irritation caused by several drugs, we conducted blind and randomised experiments in male and female C57BL/6 mice to elucidate the role of TRPV1 in dithranol-induced irritation.

View Article and Find Full Text PDF

Background-free luminescent and chromatic assay for strong visual detection of creatinine.

Talanta

January 2025

Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. Electronic address:

Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine.

View Article and Find Full Text PDF

Background: Numerous studies have assessed the risk of SARS-CoV-2 exposure and infection among health care workers during the pandemic. However, far fewer studies have investigated the impact of SARS-CoV-2 on essential workers in other sectors. Moreover, guidance for maintaining a safely operating workplace in sectors outside of health care remains limited.

View Article and Find Full Text PDF

Direct photochemical conversion of CO2 into a single carbon-based product currently represents one of the major issues in the catalysis of the CO2 reduction reaction (CO2RR). In this work, we demonstrate that the combination of an organic photosensitizer with a heptacoordinated iron(II) complex allows to attain a noble-metal-free photochemical system capable of efficient and selective conversion of CO2 into CO upon light irradiation in the presence of N,N-diisopropylethylamine (DIPEA) and 2,2,2-trifluoroethanol (TFE) as the electron and proton donor, respectively, with unprecedented performances (ΦCO up to 36%, TONCO > 1000, selectivity > 99%). As shown by transient absorption spectroscopy studies, this can be achieved thanks to the fast rates associated with the electron transfer from the photogenerated reduced dye to the catalyst, which protect the dye from parallel degradation pathways ensuring its stability along the photochemical reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!