Rapid pathogen screening holds the key against certain viral infections, especially in an overwhelming pandemic. Herein, a CRISPR-empowered electrochemical biosensor was designed for the ultrasensitive detection of the avian influenza A (H7N9) virus gene sequence. Combining the CRISPR/Cas system, a signal-amplification strategy and a high-conductivity sensing substrate, the developed biosensor showed an ultrawide dynamic range, an ultralow detection limit, and excellent selectivity for H7N9 detection, providing a potential sensing platform for the simple, fast, sensitive, and on-site detection of infectious diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cc01155g | DOI Listing |
Talanta
January 2024
School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, China. Electronic address:
The clustered regularly interspaced short palindromic repeats (CRISPR) system provides a new molecular diagnostic tool for construction of biosensor platforms due to its high programmability and target specificity. Herein, we developed a CRISPR-empowered electrochemical biosensor by combining the advantages of CRISPR/Cas13a and primer exchange reaction (PER), named PER-E-CRISPR, for target amplification-free and sensitive detection of miR-21. Dual-signal amplification procedures involve the binding of target miR-21 induced by CRISPR-based amplification, along with the hybridization of multiple short single-stranded DNA strands with PER concatemers.
View Article and Find Full Text PDFChem Commun (Camb)
August 2022
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Rapid pathogen screening holds the key against certain viral infections, especially in an overwhelming pandemic. Herein, a CRISPR-empowered electrochemical biosensor was designed for the ultrasensitive detection of the avian influenza A (H7N9) virus gene sequence. Combining the CRISPR/Cas system, a signal-amplification strategy and a high-conductivity sensing substrate, the developed biosensor showed an ultrawide dynamic range, an ultralow detection limit, and excellent selectivity for H7N9 detection, providing a potential sensing platform for the simple, fast, sensitive, and on-site detection of infectious diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!