A series of new half-disc-shaped platinum(II) complexes [Pt(ppy)(AL-6OCH)] (, [Pt(ppyF)(AL-6OCH)] (, and [Pt(ppyCF)(AL-6OCH)] ( (AL-6OCH = 1,3-bis(3,4,5-trialkoxyphenyl)propane-1,3-dionato; = 1, 6, 12) with concise structures have been designed and synthesized, in which 2-phenylpyridine (ppy) derivatives were used as cyclometalated ligands and hexacatenar β-diketonate derivatives AL-6OCH as auxiliary ligands. The single-crystal data of the methoxy diketonate analogues , , and indicate that they all display excellent square planarity. These platinum(II) complexes show a certain emission tunability (ranging from λ = 506-535 nm) by the introduction of fluorine or trifluoromethyl into ppy. Thermal studies reveal that the fluorine-substituted complexes are liquid crystals but the trifluoromethyl-substituted complexes are not. The platinum(II) complexes , , and can form a hexagonal columnar mesophase via intermolecular π-π interactions. In addition, compared to the reported platinum(II) metallomesogens, and exhibit improved ambipolar carrier mobility behaviors in semiconductor devices at the liquid crystal states.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.2c01327DOI Listing

Publication Analysis

Top Keywords

platinumii complexes
12
platinumii metallomesogens
8
ligands hexacatenar
8
semiconductor devices
8
complexes
5
cyclometalated platinumii
4
metallomesogens based
4
based half-disc-shaped
4
half-disc-shaped β-diketonate
4
β-diketonate ligands
4

Similar Publications

Correction for 'A novel platinum(II) complex with a berberine derivative as a potential antitumor agent targeting G-quadruplex DNA' by Shu-Lin Zhang , , 2025, https://doi.org/10.1039/d4ob01705f.

View Article and Find Full Text PDF

The field of platinum chemistry is ubiquitous in the research of anticancer drugs and new OLED materials. Within the vast library of existing compounds, the majority of work focuses on complexes in the +2 and +4 oxidation states, with comparatively few examples of PtIII complexes reported without bridging ligands. PtIII complexes with metal-metal bonding can be made by mild oxidation of PtII complexes having bis(phenylpyridine) ligands.

View Article and Find Full Text PDF

The synthesis and characterization of novel platinum(II) and platinum(IV) complexes derived from unsymmetrical ethylene or propylenediamine derivatives are presented. IR spectroscopy and ESI mass spectrometry techniques were employed to characterize the complexes, revealing distinctive absorption bands and isotope patterns. Furthermore, the complexes were characterized by H and C NMR spectroscopy.

View Article and Find Full Text PDF

Water-soluble porphyrins have garnered significant attention due to their broad range of applications in biomedicine, catalysis, and material chemistry. In this work, water-soluble platinum(II) and palladium(II) complexes with porphyrins bearing ethyl phosphonate substituents, namely, Pt/Pd 10-(ethoxyhydroxyphosphoryl)-5,15-di(-carboxyphenyl)porphyrins (M3m, M = Pt(II), Pd(II)) and Pt/Pd 5,10-bis(ethoxyhydroxyphosphoryl)-10,20-diarylporphyrins (M1d-M3d; aryl = -tolyl (1), mesityl (2), -carboxyphenyl (3)), were synthesized by alkaline hydrolysis of the corresponding diethyl phosphonates M6m and M4d-M6d. NMR, UV-vis, and fluorescence spectroscopy revealed that the mono-phosphonates M3m tend to form aggregates in aqueous media, while the bis-phosphonates M3d exist predominantly as monomeric species across a wide range of concentrations (10-10 M), ionic strengths (0-0.

View Article and Find Full Text PDF

This study investigates the structural, vibrational, and biological properties of novel palladium(II) and platinum(II) complexes with 5-chloro-7-azaindole-3-carbaldehyde (5ClL) and 4-chloro-7-azaindole-3-carbaldehyde (4ClL) ligands. Infrared and Raman spectroscopy, combined with DFT (ωB97X-D) calculations, provided valuable information about metal-ligand interactions, the or conformation of the aldehyde group in the ligands, and the presence of isomers in the metal complexes obtained in the solid state. tests were used to evaluate the antiproliferative activity of the novel complexes against several cancer cell lines, including ovarian cancer (A2780), cisplatin-resistant ovarian cancer (A2780cis), colon cancer (HT-29), and triple-negative breast cancer (MDA-MB-231), as well as normal mouse fibroblasts (BALB/3T3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!