Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting the elderly worldwide and causing significant movement impairments. The goal of PD treatment is to restore dopamine levels in the striatum and regulate movement symptoms. The lack of specific biomarkers for early diagnosis, as well as medication aimed at addressing the pathogenic mechanisms to decelerate the progression of dopaminergic neurodegeneration, are key roadblocks in the management of PD. Various pathogenic processes have been identified to be involved in the progression of PD, with mitochondrial dysfunction being a major contributor to the disease's pathogenesis. The regulation of mitochondrial functions is influenced by a variety of factors, including epigenetics. microRNAs (miRNAs) are epigenetic modulators involved in the regulation of gene expression and regulate a variety of proteins that essential for proper mitochondrial functioning. They are found to be dysregulated in PD, as evidenced by biological samples from PD patients and in vitro and in vivo research. In this article, we attempt to provide an overview of several miRNAs linked to mitochondrial dysfunction and their potential as diagnostic biomarkers and therapeutic targets in PD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473154 | PMC |
http://dx.doi.org/10.3233/JAD-220449 | DOI Listing |
J Immunol
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China.
The von Hippel-Lindau (VHL) tumor suppressor gene VHL is a classic tumor suppressor that has been identified in family members with clear cell renal cell carcinomas, central nervous system and retinal hemangioblastomas, phaeochromocytomas, and pancreatic neuroendocrine tumors. The well-defined function of VHL is to mediate proteasomal degradation of hydroxylated hypoxia-inducible factor α proteins, resulting in the downregulation of hypoxia-responsive gene expression. Previously, we reported that VHL inhibits antiviral signaling by targeting mitochondrial antiviral signaling protein (MAVS) for proteasomal degradation.
View Article and Find Full Text PDFJ Immunol
February 2025
Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Greifswald-Isle of Riems, Germany.
African swine fever virus (ASFV) is a large DNA virus of the Asfarviridae family that causes a fatal hemorrhagic disease in domestic swine and wild boar. Infections with moderately virulent strains predominantly result in a milder clinical course and lower lethality. As target cells of ASFV, monocytes play a crucial role in triggering T-cell-mediated immune defense and ASF pathogenesis.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
March 2025
Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States.
Offspring exposed to metformin treatment for gestational diabetes mellitus (GDM) experience altered growth patterns that increase the risk for developing cardiometabolic diseases later in life. The adaptive cellular mechanisms underlying these patterns remain unclear. Therefore, the objective of this study was to determine if chronic metformin exposure associated with GDM treatment elicits infant cellular metabolic adaptations.
View Article and Find Full Text PDFMetab Brain Dis
March 2025
Xinxiang Key Laboratory of Targeted Intervention for Brain Cell Injury, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China.
Parkinson's disease (PD) is a chronic neurodegenerative condition marked by the gradual degeneration of dopaminergic neurons, resulting in a range of disabling motor and non-motor symptoms. Despite advances, the molecular mechanisms underlying PD remain elusive, and effective biomarkers and therapeutic targets are limited. Recent studies suggest that mitochondrial dysfunction and dysregulated cellular metabolism are central to PD pathogenesis.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
March 2025
Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt.
Erbium oxide nanoparticles (ErO-NPs) have attracted significant attention for their unique physicochemical properties, including high surface area, biocompatibility, and stability. However, the impact of ErO-NPs on lymphoma cells (LCs) has not been explored, making this an innovative avenue for exploration. Therefore, the current study aimed to explore the influence of ErO-NPs on cell viability, genomic and mitochondrial DNA integrity, reactive oxygen species (ROS) generation and apoptosis induction in human U937 LCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!