Background: B cells and B cell-related gene signatures in the tumor microenvironment (TME) are associated with the efficacy of anti-programmed cell death-1 (anti-PD-1) therapy in several cancer types, but not known for esophageal squamous cell carcinoma (ESCC).

Patients And Methods: Patients with advanced ESCC receiving anti-PD-1/PD-L1-based therapy were retrospectively included. A targeted RNA profiling of 770 immune-related genes from archival ESCC tissues was performed. Differential immune-related pathways and the levels of infiltrating immune cells were estimated through Gene Set Enrichment Analysis and CIBERSORT, respectively. CD19 and CD138 expression were evaluated through immunohistochemistry (IHC). The markers evaluated were correlated with clinical benefit (CB; defined as either objective response or stable disease for ≥6 months) and survival.

Results: A total of 64 patients were enrolled. The transcriptome analysis based on 25 patients revealed that B cell signature was significantly increased in patients with CB ( <.05) and correlated with a longer PFS ( = .032) and OS ( = .013). Multiple genes representative of B cells, B cell functions, and plasma cells were upregulated in patients with CB. On further analysis of B cell subtypes in patients with CB, increase of naïve B cells ( = .057) and plasma cells ( <.01) was found but not memory B cells ( = .27). The CD19 expression in tumor stroma, detected by IHC, was higher in patients with CB ( = .033).

Conclusion: B cells in the TME were associated with CB in patients with advanced ESCC receiving anti-PD-1/PD-L1-based therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276977PMC
http://dx.doi.org/10.3389/fonc.2022.879398DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
8
clinical benefit
8
patients advanced
8
esophageal squamous
8
squamous cell
8
cell carcinoma
8
cell
5
patients
5
cells tumor
4
microenvironment associated
4

Similar Publications

Tumors are complex ecosystems of interacting cell types. The concept of cancer hallmarks distills this complexity into underlying principles that govern tumor growth. Here, we explore the spatial distribution of cancer hallmarks across 63 primary untreated tumors from 10 cancer types using spatial transcriptomics.

View Article and Find Full Text PDF

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.

View Article and Find Full Text PDF

Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.

View Article and Find Full Text PDF

Extracellular vesicles from pancreatic cancer and its tumour microenvironment promote increased Schwann cell migration.

Br J Cancer

January 2025

Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Background: Pancreatic ductal adenocarcinoma (PDAC) exhibits a high frequency of neural invasion (NI). Schwann cells (SCs) have been shown to be reprogrammed to facilitate cancer cell migration and invasion into nerves. Since extracellular vesicles (EVs) affect the tumour microenvironment and promote metastasis, the present study analysed the involvement of EVs from pancreatic cancer cells and their microenvironment in altering SC phenotype as part of the early events in the process of NI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!