We and others previously showed that extracellular ATP (eATP) is implicated in epithelial mesenchymal transition (EMT). However, the mechanisms by which eATP induces EMT and ATP's relationship to TGF-β, a well-known EMT inducer, are largely unclear. Also, eATP-induced EMT has never been studied at transcriptomic and metabolomics levels. Based on our previous studies, we hypothesized that eATP acts as a specific inducer and regulator of EMT at all levels in cancer cells. RNAseq and metabolomics analyses were performed on human non-small cell lung cancer (NSCLC) A549 cells treated with either eATP or TGF-β. Bio-functional assays, such as invasion, intracellular ATP, cell proliferation, cytoskeleton remodeling, and others were conducted in NSCLC A549 and H1299 cells to validate changes observed from RNAseq and metabolomics studies. In the RNAseq study, eATP significantly enriched expressions of genes involved in EMT similarly to TGF-β after 2 and 6 hours of treatment. Samples treated with eATP for 2 hours share 131 upregulated EMT genes with those of TGF-β treated samples, and 42 genes at 6 hours treatment. Eleven genes, with known or unknown functions in EMT, are significantly upregulated by both inducers at both time points, have been identified. , one of the 11 genes, was selected for further study. eATP induced numerous EMT-related changes in metabolic pathways, including cytoskeleton rearrangement, glycolysis, glutaminolysis, ROS, and individual metabolic changes similar to those induced by TGF-β. Functional bioassays verified the findings from RNAseq and metabolomics that eATP EMT-like changes in A549 and H1299 cells similarly to TGF-β. was found to be implicated in EMT. In these studies, eATP-induced EMT, at all levels examined, is similar but non-identical to that induced by TGF-β, and functions in such a way that exogenous addition of TGF-β is unnecessary for the induction. The study of further verified its potential roles in EMT and the RNAseq analysis results. All these strongly indicate that eATP is a multi-functional and multi-locational inducer and regulator of EMT, changing our thinking on how EMT is induced and regulated and pointing to new directions for inhibiting EMT in cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282887 | PMC |
http://dx.doi.org/10.3389/fonc.2022.912065 | DOI Listing |
Breast Cancer Res
January 2025
School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK.
Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a mesenchymal phenotype remains challenging in clinical practice. In this study, we validated the correlation between EMT status and resistance to endocrine therapy in ER+ breast cancer from a transcriptomic perspective.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.
Background: XB130, a classical adaptor protein, exerts a critical role in diverse cellular processes. Aberrant expression of XB130 is closely associated with tumorigenesis and aggressiveness. However, the mechanisms governing its expression regulation remain poorly understood.
View Article and Find Full Text PDFJ Am Acad Dermatol
January 2025
Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL.
Frontal Fibrosing Alopecia (FFA) poses a distinct dermatological challenge with epithelial-mesenchymal transition (EMT) at its core, driving follicular cell transformation and fibrotic changes. Genetic studies highlight significant associations, while environmental triggers, such as implicated cosmetic products (sunblock, personal hair care products, and moisturizers), introduce complexity. Managing FFA proves daunting due to its chronic and unpredictable nature.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Hebei Key Laboratory of Organ Fibrosis, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China. Electronic address:
Epithelial-mesenchymal transition (EMT) is implicated in the pathogenesis of silicosis. High mobility group box 1 (HMGB1) has been found to induce EMT in fibrotic diseases. Previous studies have revealed a critical role of HMGB1 in silicosis, whereas the detail mechanisms still obscure.
View Article and Find Full Text PDFPhytomedicine
December 2024
State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences/State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China. Electronic address:
Background: Chronic atrophic gastritis (CAG) is a precursor to gastric cancer, a leading cause of cancer-related deaths worldwide. Despite current therapeutic strategies, preventing the transition from gastritis to cancer remains a challenge. Traditional Chinese Medicine (TCM), particularly the Yiqi-Huayu-Jiedu (YQHYJD) formula, have exhibited promising results in CAG management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!