In this paper, bidirectional-coupled neurons through an asymmetric electrical synapse are investigated. These coupled neurons involve 2D Hindmarsh-Rose (HR) and 2D FitzHugh-Nagumo (FN) neurons. The equilibria of the coupled neurons model are investigated, and their stabilities have revealed that, for some values of the electrical synaptic weight, the model under consideration can display either self-excited or hidden firing patterns. In addition, the hidden coexistence of chaotic bursting with periodic spiking, chaotic spiking with period spiking, chaotic bursting with a resting pattern, and the coexistence of chaotic spiking with a resting pattern are also found for some sets of electrical synaptic coupling. For all the investigated phenomena, the Hamiltonian energy of the model is computed. It enables the estimation of the amount of energy released during the transition between the various electrical activities. Pspice simulations are carried out based on the analog circuit of the coupled neurons to support our numerical results. Finally, an STM32F407ZE microcontroller development board is exploited for the digital implementation of the proposed coupled neurons model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279548 | PMC |
http://dx.doi.org/10.1007/s11571-021-09747-1 | DOI Listing |
Nano Converg
January 2025
Bendable Electronics and Sustainable Technologies (BEST) Group, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115, USA.
The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot.
View Article and Find Full Text PDFCell Death Dis
January 2025
In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany.
Neurite degeneration (ND) precedes cell death in many neurodegenerative diseases. However, it remains unclear how this compartmentalized cell death process is orchestrated in the central nervous system (CNS). The establishment of a CNS axotomy model (using modified 3D LUHMES cultures) allowed us to study metabolic control of ND in human midbrain-derived neurons without the use of toxicants or other direct disturbance of cellular metabolism.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
In ephaptic coupling, physically adjacent neurons influence one another's activity via the electric fields they generate. To date, the molecular mechanisms that mediate and modulate ephaptic coupling's effects remain poorly understood. Here, we show that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel lateralizes the potentially mutual ephaptic inhibition between gustatory receptor neurons (GRNs).
View Article and Find Full Text PDFJ Biomed Opt
January 2025
TU Dresden, Carl Gustav Carus Faculty of Medicine, Anesthesiology and Intensive Care Medicine, Clinical Sensing and Monitoring, Dresden, Germany.
Significance: The precise identification and preservation of functional brain areas during neurosurgery are crucial for optimizing surgical outcomes and minimizing postoperative deficits. Intraoperative imaging plays a vital role in this context, offering insights that guide surgeons in protecting critical cortical regions.
Aim: We aim to evaluate and compare the efficacy of intraoperative thermal imaging (ITI) and intraoperative optical imaging (IOI) in detecting the primary somatosensory cortex, providing a detailed assessment of their potential integration into surgical practice.
Mol Divers
January 2025
School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, People's Republic of China.
Parkinson's disease (PD) is a chronic neurodegenerative disorder marked by dopaminergic neuron degeneration in the substantia nigra. Emerging evidence suggests vitamin D3 (VD) plays a therapeutic role in PD, but its precise molecular mechanisms remain unclear. This study employed network pharmacology and bioinformatics to identify VD's hub targets and related pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!