Discovery of drugs rapidly and effectively is an important aspect for Alzheimer's disease (AD). In this study, a novel high-throughput screening (HTS) method aims at screening the small-molecules with amyloid- (A) binding affinity from natural medicines, based on the combinational use of biolayer interferometry (BLI) and ultra-high-performance liquid chromatography coupled with diode-array detector and quadrupole/time-of-flight tandem mass spectrometry (UHPLC-DAD-Q/TOF-MS/MS) has been firstly developed. Briefly, the components in natural medicines disassociated from biotinylated A were collected to analyze their potential A binding affinity by UHPLC-DAD-Q/TOF-MS/MS. Here, baicalein was confirmed to exhibit the highest binding affinity with A in . Moreover, polyporenic acid C (PPAC), dehydrotumulosic acid (DTA), and tumulosic acid (TA) in Kai-Xin-San (KXS) were also identified as potent A inhibitors. Further bioactivity validations indicated that these compounds could inhibit A fibrillation, improve the viability in A-induced PC-12 cells, and decrease the A content and improve the behavioral ability in . The molecular docking results confirmed that PPAC, DTA, and TA possessed good binding properties with A. Collectively, the present study has provided a novel and effective HTS method for the identification of natural inhibitors on A fibrillation, which may accelerate the process on anti-AD drugs discovery and development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279722 | PMC |
http://dx.doi.org/10.1016/j.apsb.2021.08.030 | DOI Listing |
ACS Sens
January 2025
Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Solid-phase immunosorbent reactions, such as ELISA, are widely used for detecting, identifying, and quantifying protein markers. However, traditional centimeter scale well-based immunoreactors suffer from low surface-to-volume (S/V) ratios, leading to large sample consumption and a long assay time. Microfluidic technologies, particularly tubular microfluidic immunoreactors, have emerged as promising alternatives due to their high S/V ratios.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco.
Cognitive dysfunction in Alzheimer's disease results from a complex interplay of various pathological processes, including the dysregulation of key enzymes such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidase B (MAO-B). This study proposes and designs a series of novel molecules derived from 8-hydroxyquinoline (Azo-8HQ) as potential multi-target lead candidates for treating AD. An exhaustive in silico analysis was conducted, encompassing docking studies, ADMET analysis, density functional theory (DFT) studies, molecular dynamics simulations, and subsequent MM-GBSA calculations to examine the pharmacological potential of these molecules with the specific targets of interest.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Schrödinger Incorporated, Cambridge, Massachusetts 02142, United States.
Brief Bioinform
November 2024
Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, 999077, China.
The complexity of T cell receptor (TCR) sequences, particularly within the complementarity-determining region 3 (CDR3), requires efficient embedding methods for applying machine learning to immunology. While various TCR CDR3 embedding strategies have been proposed, the absence of their systematic evaluations created perplexity in the community. Here, we extracted CDR3 embedding models from 19 existing methods and benchmarked these models with four curated datasets by accessing their impact on the performance of TCR downstream tasks, including TCR-epitope binding affinity prediction, epitope-specific TCR identification, TCR clustering, and visualization analysis.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
February 2024
CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.
Pichia pastoris is a popular yeast host for high-level heterologous expression of proteins on an industrial scale owing to its reliable expression, robust growth, high fermentation density, and easy genetic manipulation and cultivation at a relatively low cost. Of particular interest is its high secretion efficiency for small proteins including insulin, human serum albumin, vaccines, enzymes, and llama-derived heavy-chain only antibodies (nanobodies) for pharmaceutical and research applications. However, a recurring challenge in using P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!