Simvastatin (SIM) is a diet drug to treat high lipid levels in the blood. It has the drawback of being metabolized in humans' gastrointestinal tract (GIT) when taken in an oral dosage form. To enhance the role of SIM in treating hyperlipidemias and bypassing its metabolism in GIT, a biodegradable nanocarrier as a SIM-loaded lipid emulsion nanoparticle via the solvent injection method was designed. Cholesterol acts as a lipid core, and Tween 80 was utilized to stabilize the core. The optimized nanoformulation was characterized for its particle diameter, zeta potential, surface morphology, entrapment efficiency, crystallinity, and molecular interaction. Furthermore, the transdermal hydrogel was characterized by physical appearance, rheology, pH, and spreadability. In vitro assays were executed to gauge the potential of LENPs and olive oil for transdermal delivery. The mean particle size and zeta potential of the optimized nanoparticles were 174 nm and -22.5 mV 0.127, respectively. Crystallinity studies and Fourier transform infrared analyses revealed no molecular interactions. Hydrogels showed a sustained release compared to SIM-loaded LENPs that can be proposed as a better delivery system for SIM. We encourage further investigations to explore the effect of reported formulations for transdermal delivery by experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280776 | PMC |
http://dx.doi.org/10.1021/acsomega.2c02242 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
Introduction: Androgenetic alopecia (AGA) is a multifactorial and age-related dermatological disease that affects both males and females, usually at older ages. Traditional hair repair drugs exemplified by minoxidil have limitations such as skin irritation and hypertrichosis. Thus, attention has been shifted to the use of repurposing drugs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:
This study aimed to elucidate the pathways through which covalent and non-covalent interactions between deamidated gliadin (DG) and tannic acid (TA) on influence the stability of Pickering emulsions. The interactions induced protein unfolding, as evidenced by increased ultraviolet absorption and a red shift in fluorescence emission. DG-TA composite nanoparticles effectively stabilized high internal phase emulsions, whereas DG nanoparticles alone did not.
View Article and Find Full Text PDFSoft Matter
January 2025
INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France.
Characterization of nanoscale formulations is a continuous challenge. Size, morphology and surface properties are the most common characterizations. However, physicochemical properties inside the nanoparticles, like viscosity, cannot be directly measured.
View Article and Find Full Text PDFCureus
December 2024
Anesthesia Department, King Abdulaziz Medical City, Jeddah, SAU.
Local anesthetic systemic toxicity (LAST) is a well-known life-threatening local anesthetics complication, especially if given in inappropriate doses or routes. Therefore, physicians should be aware of LAST symptoms, such as neurological and cardiac symptoms. In addition, they should always consider it in the differential diagnosis when they encounter similar symptoms.
View Article and Find Full Text PDFFood Chem
January 2025
School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China. Electronic address:
The demand for high-quality, nutritious, and sustainable food products has led to a significant interest in the development of durable and effective emulsions. Pickering emulsions are promising candidates but the currently adopted stabilizers still have limitations. Here in this study, we introduce a novel egg derived reconstituted lipid nanoparticles (E-rLNPs) as stabilizer for Pickering emulsions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!