AI Article Synopsis

Article Abstract

Simvastatin (SIM) is a diet drug to treat high lipid levels in the blood. It has the drawback of being metabolized in humans' gastrointestinal tract (GIT) when taken in an oral dosage form. To enhance the role of SIM in treating hyperlipidemias and bypassing its metabolism in GIT, a biodegradable nanocarrier as a SIM-loaded lipid emulsion nanoparticle via the solvent injection method was designed. Cholesterol acts as a lipid core, and Tween 80 was utilized to stabilize the core. The optimized nanoformulation was characterized for its particle diameter, zeta potential, surface morphology, entrapment efficiency, crystallinity, and molecular interaction. Furthermore, the transdermal hydrogel was characterized by physical appearance, rheology, pH, and spreadability. In vitro assays were executed to gauge the potential of LENPs and olive oil for transdermal delivery. The mean particle size and zeta potential of the optimized nanoparticles were 174 nm and -22.5 mV 0.127, respectively. Crystallinity studies and Fourier transform infrared analyses revealed no molecular interactions. Hydrogels showed a sustained release compared to SIM-loaded LENPs that can be proposed as a better delivery system for SIM. We encourage further investigations to explore the effect of reported formulations for transdermal delivery by experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280776PMC
http://dx.doi.org/10.1021/acsomega.2c02242DOI Listing

Publication Analysis

Top Keywords

lipid emulsion
8
zeta potential
8
transdermal delivery
8
simvastatin-loaded lipid
4
emulsion nanoparticles
4
nanoparticles characterizations
4
characterizations applications
4
applications simvastatin
4
simvastatin sim
4
sim diet
4

Similar Publications

Introduction: Androgenetic alopecia (AGA) is a multifactorial and age-related dermatological disease that affects both males and females, usually at older ages. Traditional hair repair drugs exemplified by minoxidil have limitations such as skin irritation and hypertrichosis. Thus, attention has been shifted to the use of repurposing drugs.

View Article and Find Full Text PDF

Influence pathways of covalent and non-covalent interactions on the stability of deamidated gliadin-tannic acid-based Pickering emulsions.

Int J Biol Macromol

January 2025

Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:

This study aimed to elucidate the pathways through which covalent and non-covalent interactions between deamidated gliadin (DG) and tannic acid (TA) on influence the stability of Pickering emulsions. The interactions induced protein unfolding, as evidenced by increased ultraviolet absorption and a red shift in fluorescence emission. DG-TA composite nanoparticles effectively stabilized high internal phase emulsions, whereas DG nanoparticles alone did not.

View Article and Find Full Text PDF

Lipophilic molecular rotor to assess the viscosity of oil core in nano-emulsion droplets.

Soft Matter

January 2025

INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France.

Characterization of nanoscale formulations is a continuous challenge. Size, morphology and surface properties are the most common characterizations. However, physicochemical properties inside the nanoparticles, like viscosity, cannot be directly measured.

View Article and Find Full Text PDF

Local anesthetic systemic toxicity (LAST) is a well-known life-threatening local anesthetics complication, especially if given in inappropriate doses or routes. Therefore, physicians should be aware of LAST symptoms, such as neurological and cardiac symptoms. In addition, they should always consider it in the differential diagnosis when they encounter similar symptoms.

View Article and Find Full Text PDF

The demand for high-quality, nutritious, and sustainable food products has led to a significant interest in the development of durable and effective emulsions. Pickering emulsions are promising candidates but the currently adopted stabilizers still have limitations. Here in this study, we introduce a novel egg derived reconstituted lipid nanoparticles (E-rLNPs) as stabilizer for Pickering emulsions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!